Suppr超能文献

通过电子健康记录的自然语言处理进行甲状腺超声检查适宜性识别

Thyroid Ultrasound Appropriateness Identification Through Natural Language Processing of Electronic Health Records.

作者信息

Jacome Cristian Soto, Torres Danny Segura, Fan Jungwei W, Loor-Torres Ricardo, Duran Mayra, Zahidy Misk Al, Cabezas Esteban, Borras-Osorio Mariana, Toro-Tobon David, Wu Yuqi, Wu Yonghui, Ospina Naykky Singh, Brito Juan P

机构信息

Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Medicine, Knowledge and Evaluation Research Unit, Mayo Clinic, Rochester, MN.

Department of Artificial, Intelligence and Informatics, Mayo Clinic, Rochester, MN.

出版信息

Mayo Clin Proc Digit Health. 2024 Mar;2(1):67-74. doi: 10.1016/j.mcpdig.2024.01.001. Epub 2024 Feb 1.

Abstract

OBJECTIVE

To address thyroid cancer overdiagnosis, we aim to develop a natural language processing (NLP) algorithm to determine the appropriateness of thyroid ultrasounds (TUS).

PATIENTS AND METHODS

Between 2017 and 2021, we identified 18,000 TUS patients at Mayo Clinic and selected 628 for chart review to create a ground truth dataset based on consensus. We developed a rule-based NLP pipeline to identify TUS as appropriate TUS (aTUS) or inappropriate TUS (iTUS) using patients' clinical notes and additional meta information. In addition, we designed an abbreviated NLP pipeline (aNLP) solely focusing on labels from TUS order requisitions to facilitate deployment at other health care systems. Our dataset was split into a training set of 468 (75%) and a test set of 160 (25%), using the former for rule development and the latter for performance evaluation.

RESULTS

There were 449 (95.9%) patients identified as aTUS and 19 (4.06%) as iTUS in the training set; there are 155 (96.88%) patients identified as aTUS and 5 (3.12%) were iTUS in the test set. In the training set, the pipeline achieved a sensitivity of 0.99, specificity of 0.95, and positive predictive value of 1.0 for detecting aTUS. The testing cohort revealed a sensitivity of 0.96, specificity of 0.80, and positive predictive value of 0.99. Similar performance metrics were observed in the aNLP pipeline.

CONCLUSION

The NLP models can accurately identify the appropriateness of a thyroid ultrasound from clinical documentation and order requisition information, a critical initial step toward evaluating the drivers and outcomes of TUS use and subsequent thyroid cancer overdiagnosis.

摘要

目的

为解决甲状腺癌过度诊断问题,我们旨在开发一种自然语言处理(NLP)算法,以确定甲状腺超声检查(TUS)的适宜性。

患者与方法

2017年至2021年期间,我们在梅奥诊所识别出18000例接受TUS检查的患者,并选择了628例进行病历审查,以基于共识创建一个真实数据集。我们开发了一个基于规则的NLP流程,利用患者的临床记录和其他元信息将TUS识别为适宜的TUS(aTUS)或不适宜的TUS(iTUS)。此外,我们设计了一个简化的NLP流程(aNLP),仅关注TUS检查申请单上的标签,以便于在其他医疗系统中部署。我们的数据集被分为一个包含468例(75%)的训练集和一个包含160例(25%)的测试集,前者用于规则开发,后者用于性能评估。

结果

在训练集中,有449例(95.9%)患者被识别为aTUS,19例(4.06%)为iTUS;在测试集中,有155例(96.88%)患者被识别为aTUS,5例(3.12%)为iTUS。在训练集中,该流程检测aTUS的灵敏度为0.99,特异度为0.95,阳性预测值为1.0。测试队列显示灵敏度为0.96,特异度为0.80,阳性预测值为0.99。在aNLP流程中观察到了类似的性能指标。

结论

NLP模型可以从临床文档和检查申请信息中准确识别甲状腺超声检查的适宜性,这是评估TUS使用的驱动因素和结果以及后续甲状腺癌过度诊断的关键初始步骤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34b3/11975732/db577d282e4b/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验