Suppr超能文献

基于三重周期性极小曲面的 3D 打印多孔氧化锆生物材料通过调节骨免疫调节和骨/血管生成促进体外骨整合。

3D Printed Porous Zirconia Biomaterials based on Triply Periodic Minimal Surfaces Promote Osseointegration In Vitro by Regulating Osteoimmunomodulation and Osteo/Angiogenesis.

机构信息

Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China.

Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200062, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2024 Mar 27;16(12):14548-14560. doi: 10.1021/acsami.3c18799. Epub 2024 Mar 19.

Abstract

The triply periodic minimal surface (TPMS) is a highly useful structure for bone tissue engineering owing to its nearly nonexistent average surface curvature, high surface area-to-volume ratio, and exceptional mechanical energy absorption properties. However, limited literature is available regarding bionic zirconia implants using the TPMS structure for bone regeneration. Herein, we employed the digital light processing (DLP) technology to fabricate four types of zirconia-based TPMS structures: P-cell, S14, IWP, and Gyroid. For cell proliferation, the four porous TPMS structures outperformed the solid zirconia group (P-cell > S14 > Gyroid > IWP > ZrO). In vitro assessments on the biological responses and osteogenic properties of the distinct porous surfaces identified the IWP and Gyroid structures as promising candidates for future clinical applications of porous zirconia implants because of their superior osteogenic capabilities (IWP > Gyroid > S14 > P-cell > ZrO) and mechanical properties (ZrO > IWP > Gyroid > S14 > P-cell). Furthermore, the physical properties of the IWP/Gyroid surface had more substantial effects on bone immune regulation by reducing macrophage M1 phenotype polarization while increasing M2 phenotype polarization compared with the solid zirconia surface. Additionally, the IWP and Gyroid groups exhibited enhanced immune osteogenesis and angiogenesis abilities. Collectively, these findings highlight the substantial impact of topology on bone/angiogenesis and immune regulation in promoting bone integration.

摘要

周期性极小曲面(TPMS)是一种非常有用的结构,可用于骨组织工程,因为它的平均表面曲率几乎为零,具有较高的表面积与体积比,以及出色的机械能吸收特性。然而,关于使用 TPMS 结构进行骨再生的仿生氧化锆植入物的文献有限。在此,我们采用数字光处理(DLP)技术来制造四种基于氧化锆的 TPMS 结构:P 细胞、S14、IWP 和 Gyroid。在细胞增殖方面,四种多孔 TPMS 结构的表现优于实心氧化锆组(P 细胞>S14>Gyroid>IWP>ZrO)。在不同多孔表面的生物响应和成骨特性的体外评估中,IWP 和 Gyroid 结构被认为是未来多孔氧化锆植入物临床应用的有前途的候选物,因为它们具有优越的成骨能力(IWP>Gyroid>S14>P 细胞>ZrO)和机械性能(ZrO>IWP>Gyroid>S14>P 细胞)。此外,与实心氧化锆表面相比,IWP/Gyroid 表面的物理性能通过减少巨噬细胞 M1 表型极化,同时增加 M2 表型极化,对骨骼免疫调节具有更大的影响。此外,IWP 和 Gyroid 组表现出增强的免疫成骨和血管生成能力。总的来说,这些发现强调了拓扑结构对促进骨整合的骨/血管生成和免疫调节的重大影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验