College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China.
Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
New Phytol. 2024 Jun;242(5):2148-2162. doi: 10.1111/nph.19693. Epub 2024 Mar 19.
Although saline-alkali stress can improve tomato quality, the detailed molecular processes that balance stress tolerance and quality are not well-understood. Our research links nitric oxide (NO) and γ-aminobutyric acid (GABA) with the control of root malate exudation and fruit malate storage, mediated by aluminium-activated malate transporter 9/14 (SlALMT9/14). By modifying a specific S-nitrosylated site on pyruvate-dependent GABA transaminase 1 (SlGABA-TP1), we have found a way to enhance both plant's saline-alkali tolerance and fruit quality. Under saline-alkali stress, NO levels vary in tomato roots and fruits. High NO in roots leads to S-nitrosylation of SlGABA-TP1/2/3 at Cys316/258/316, reducing their activity and increasing GABA. This GABA then reduces malate exudation from roots and affects saline-alkali tolerance by interacting with SlALMT14. In fruits, a moderate NO level boosts SlGABA-TP1 expression and GABA breakdown, easing GABA's block on SlALMT9 and increasing malate storage. Mutants of SlGABA-TP1 that do not undergo S-nitrosylation maintain high activity, supporting malate movement in both roots and fruits under stress. This study suggests targeting SlGABA-TP1 in tomato breeding could significantly improve plant's saline-alkali tolerance and fruit quality, offering a promising strategy for agricultural development.
尽管盐碱性胁迫可以提高番茄的品质,但平衡胁迫耐受性和品质的详细分子过程还不是很清楚。我们的研究将一氧化氮(NO)和γ-氨基丁酸(GABA)与铝激活的苹果酸转运蛋白 9/14(SlALMT9/14)介导的根苹果酸分泌和果实苹果酸储存的控制联系起来。通过修饰丙酮酸依赖性 GABA 转氨酶 1(SlGABA-TP1)上的一个特定 S-亚硝酰化位点,我们找到了一种既能提高植物耐盐碱性又能提高果实品质的方法。在盐碱性胁迫下,番茄根和果实中的 NO 水平发生变化。根中高浓度的 NO 导致 SlGABA-TP1/2/3 上 Cys316/258/316 的 S-亚硝酰化,降低其活性并增加 GABA。这种 GABA 减少根的苹果酸分泌,并通过与 SlALMT14 相互作用影响耐盐碱性。在果实中,适度的 NO 水平会促进 SlGABA-TP1 的表达和 GABA 的分解,缓解 GABA 对 SlALMT9 的抑制作用,并增加苹果酸的储存。不发生 S-亚硝酰化的 SlGABA-TP1 突变体保持高活性,在胁迫下支持根和果实中苹果酸的移动。本研究表明,在番茄育种中靶向 SlGABA-TP1 可以显著提高植物的耐盐碱性和果实品质,为农业发展提供了一种有前途的策略。