Suppr超能文献

疫霉菌通过抑制GSNOR调控一氧化氮稳态来破坏植物免疫。

Phytophthora Disrupts Plant Immunity by Manipulating Nitric Oxide Homeostasis Through GSNOR Inhibition.

作者信息

Li Tingting, Kang Jing, Zhang Haizhu, Wang Lina, Lu Minghui, Cai Lin, Li Jianming, Joosten Matthieu H A J, Du Yu

机构信息

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.

College of Tobacco Science of Guizhou University/Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)/Guizhou Key Lab of Agro-Bioengineering, Guiyang, 550000, China.

出版信息

Adv Sci (Weinh). 2025 Sep;12(33):e03633. doi: 10.1002/advs.202503633. Epub 2025 Jun 20.

Abstract

Nitric oxide (NO), a pivotal redox signaling molecule, coordinates plant development and immune responses through S-nitrosylation-mediated protein modification. While NO-dependent S-nitrosylation fine-tunes immune responses, whether pathogens hijack this process to subvert plant immunity remains unclear. Here it is shown that S-nitrosoglutathione reductase (GSNOR), which maintains NO homeostasis by degrading S-nitrosoglutathione (GSNO), positively regulates tomato resistance to Phytophthora capsici. Active-site mutations in GSNOR abolished its function in plant defense. Remarkably, GSNOR is manipulated by PcRD18, which is an RxLR effector of P. capsici that is involved in virulence of this oomycete pathogen. PcRD18 elevates the cellular NO content and S-nitrosylation levels by dually inhibiting GSNOR activity and promoting its autophagy-mediated degradation via enhanced ATG8c interaction. Structure analysis reveals critical PcRD18-GSNOR interaction interfaces and mutations in these sites of PcRD18 abolish its ability to interact with GSNOR, thereby blocking the effector's ability to elevate NO levels, suppress the reactive oxygen species (ROS) burst, and enhance virulence. GSNOR mutations disrupting PcRD18 binding produced a mutant form of GSNOR enhancing Phytophthora resistance. These findings unveil a pathogen strategy to subvert NO homeostasis through effector-mediated hijacking of GSNOR and suggest that engineering the host-pathogen interface to disrupt the interaction between GSNOR and PcRD18 will enhance crop disease resistance.

摘要

一氧化氮(NO)是一种关键的氧化还原信号分子,通过S-亚硝基化介导的蛋白质修饰来协调植物发育和免疫反应。虽然依赖NO的S-亚硝基化可微调免疫反应,但病原体是否劫持这一过程以破坏植物免疫仍不清楚。本文表明,通过降解S-亚硝基谷胱甘肽(GSNO)来维持NO稳态的S-亚硝基谷胱甘肽还原酶(GSNOR)正向调节番茄对辣椒疫霉的抗性。GSNOR的活性位点突变消除了其在植物防御中的功能。值得注意的是,GSNOR受到PcRD18的操控,PcRD18是辣椒疫霉的一种RxLR效应因子,参与这种卵菌病原体的毒力。PcRD18通过双重抑制GSNOR活性并通过增强与ATG8c的相互作用促进其自噬介导的降解,从而提高细胞内NO含量和S-亚硝基化水平。结构分析揭示了关键的PcRD18-GSNOR相互作用界面,PcRD18这些位点的突变消除了其与GSNOR相互作用的能力,从而阻断了效应因子提高NO水平、抑制活性氧(ROS)爆发和增强毒力的能力。破坏PcRD18结合的GSNOR突变产生了一种增强疫霉抗性的GSNOR突变形式。这些发现揭示了病原体通过效应因子介导的劫持GSNOR来破坏NO稳态的策略,并表明改造宿主-病原体界面以破坏GSNOR与PcRD18之间的相互作用将增强作物抗病性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb2d/12412504/41449bd74d6f/ADVS-12-e03633-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验