Institute of Molecular Biosciences, University of Graz, Graz, Austria.
Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria.
Proteins. 2024 Jul;92(7):886-902. doi: 10.1002/prot.26686. Epub 2024 Mar 19.
Proteins are used in various biotechnological applications, often requiring the optimization of protein properties by introducing specific amino-acid exchanges. Deep mutational scanning (DMS) is an effective high-throughput method for evaluating the effects of these exchanges on protein function. DMS data can then inform the training of a neural network to predict the impact of mutations. Most approaches use some representation of the protein sequence for training and prediction. As proteins are characterized by complex structures and intricate residue interaction networks, directly providing structural information as input reduces the need to learn these features from the data. We introduce a method for encoding protein structures as stacked 2D contact maps, which capture residue interactions, their evolutionary conservation, and mutation-induced interaction changes. Furthermore, we explored techniques to augment neural network training performance on smaller DMS datasets. To validate our approach, we trained three neural network architectures originally used for image analysis on three DMS datasets, and we compared their performances with networks trained solely on protein sequences. The results confirm the effectiveness of the protein structure encoding in machine learning efforts on DMS data. Using structural representations as direct input to the networks, along with data augmentation and pretraining, significantly reduced demands on training data size and improved prediction performance, especially on smaller datasets, while performance on large datasets was on par with state-of-the-art sequence convolutional neural networks. The methods presented here have the potential to provide the same workflow as DMS without the experimental and financial burden of testing thousands of mutants. Additionally, we present an open-source, user-friendly software tool to make these data analysis techniques accessible, particularly to biotechnology and protein engineering researchers who wish to apply them to their mutagenesis data.
蛋白质在各种生物技术应用中被广泛使用,通常需要通过引入特定的氨基酸交换来优化蛋白质的性质。深度突变扫描(DMS)是一种有效的高通量方法,可用于评估这些交换对蛋白质功能的影响。然后,DMS 数据可以为训练神经网络提供信息,以预测突变的影响。大多数方法使用蛋白质序列的某种表示形式进行训练和预测。由于蛋白质的结构复杂,残基相互作用网络错综复杂,直接提供结构信息作为输入可以减少从数据中学习这些特征的需求。我们引入了一种将蛋白质结构编码为堆叠的 2D 接触图的方法,该方法可捕获残基相互作用、它们的进化保守性以及突变引起的相互作用变化。此外,我们还探索了在较小的 DMS 数据集上增强神经网络训练性能的技术。为了验证我们的方法,我们在三个 DMS 数据集上训练了最初用于图像分析的三个神经网络架构,并将它们的性能与仅基于蛋白质序列训练的网络进行了比较。结果证实了在 DMS 数据的机器学习工作中使用蛋白质结构编码的有效性。使用结构表示作为网络的直接输入,以及数据扩充和预训练,可以大大减少对训练数据大小的需求,并提高预测性能,特别是在较小的数据集上,而在较大的数据集上的性能与最新的序列卷积神经网络相当。本文提出的方法有可能提供与 DMS 相同的工作流程,而无需进行数千个突变体测试的实验和财务负担。此外,我们还提供了一个开源、用户友好的软件工具,使这些数据分析技术易于使用,特别是对于希望将其应用于突变数据的生物技术和蛋白质工程研究人员。