Suppr超能文献

基于U-Net集成的密集细胞和细胞器分割

Densely Populated Cell and Organelles Segmentation with U-Net Ensembles.

作者信息

Fulton Samuel J, Baenen Cameron M, Storrie Brian, Yang Zijie, Leapman Richard D, Aronova Maria A

机构信息

National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA.

Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.

出版信息

bioRxiv. 2025 Jan 7:2024.11.19.623228. doi: 10.1101/2024.11.19.623228.

Abstract

The complex and highly intertwined morphology of activated platelets within thrombi poses significant challenges for segmentation. In this work, we present a robust dual-network pipeline for cell and organelle segmentation. This multi-network approach enables the detection of fine details near the membrane while simultaneously facilitating long-range smoothing in regions distal to the membrane, drastically improving the performance of the watershed clustering algorithm compared to single-network approaches. We further enhance segmentation performance by collecting neural network predictions along multiple axes, capturing 3D correlations using only 2D neural networks. We segment and analyze hundreds of platelets and report quantitative morphological measurements, showing volumes consistent with hand-segmented results. We apply our segmentation pipeline to the CREMI neuron segmentation challenge data and provide state-of-the-art results.

摘要

血栓内活化血小板复杂且高度交织的形态给分割带来了重大挑战。在这项工作中,我们提出了一种用于细胞和细胞器分割的强大双网络管道。这种多网络方法能够检测膜附近的精细细节,同时促进膜远端区域的长距离平滑,与单网络方法相比,极大地提高了分水岭聚类算法的性能。我们通过沿多个轴收集神经网络预测结果,仅使用二维神经网络捕捉三维相关性,进一步提高分割性能。我们对数百个血小板进行分割和分析,并报告定量形态测量结果,显示体积与手动分割结果一致。我们将分割管道应用于CREMI神经元分割挑战赛数据,并提供了领先的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4360/11727477/9d96d6c622ec/nihpp-2024.11.19.623228v3-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验