Rohr Maurice, Müller Benedikt, Dill Sebastian, Güney Gökhan, Hoog Antink Christoph
KIS*MED - AI Systems in Medicine, Technische Universität Darmstadt, Darmstadt, Germany.
PLOS Digit Health. 2024 Mar 19;3(3):e0000461. doi: 10.1371/journal.pdig.0000461. eCollection 2024 Mar.
Cardiovascular diseases (CVDs) account for a high fatality rate worldwide. Heart murmurs can be detected from phonocardiograms (PCGs) and may indicate CVDs. Still, they are often overlooked as their detection and correct clinical interpretation require expert skills. In this work, we aim to predict the presence of murmurs and clinical outcomes from multiple PCG recordings employing an explainable multitask model.
Our approach consists of a two-stage multitask model. In the first stage, we predict the murmur presence in single PCGs using a multiple instance learning (MIL) framework. MIL also allows us to derive sample-wise classifications (i.e. murmur locations) while only needing one annotation per recording ("weak label") during training. In the second stage, we fuse explainable hand-crafted features with features from a pooling-based artificial neural network (PANN) derived from the MIL framework. Finally, we predict the presence of murmurs and the clinical outcome for a single patient based on multiple recordings using a simple feed-forward neural network.
We show qualitatively and quantitatively that the MIL approach yields useful features and can be used to detect murmurs on multiple time instances and may thus guide a practitioner through PCGs. We analyze the second stage of the model in terms of murmur classification and clinical outcome. We achieved a weighted accuracy of 0.714 and an outcome cost of 13612 when using the PANN model and demographic features on the CirCor dataset (hidden test set of the George B. Moody PhysioNet challenge 2022, team "Heart2Beat", rank 12 / 40).
To the best of our knowledge, we are the first to demonstrate the usefulness of MIL in PCG classification. Also, we showcase how the explainability of the model can be analyzed quantitatively, thus avoiding confirmation bias inherent to many post-hoc methods. Finally, our overall results demonstrate the merit of employing MIL combined with handcrafted features for the generation of explainable features as well as for a competitive classification performance.
心血管疾病(CVDs)在全球范围内致死率很高。心音图(PCGs)可检测到心脏杂音,可能提示心血管疾病。然而,由于其检测和正确的临床解读需要专业技能,它们常常被忽视。在这项工作中,我们旨在使用可解释的多任务模型从多个心音图记录中预测杂音的存在和临床结果。
我们的方法由一个两阶段多任务模型组成。在第一阶段,我们使用多实例学习(MIL)框架预测单个心音图中杂音的存在。MIL还允许我们在训练期间仅需每个记录一个注释(“弱标签”)的情况下得出样本级分类(即杂音位置)。在第二阶段,我们将可解释的手工特征与基于池化的人工神经网络(PANN)从MIL框架中导出的特征相融合。最后,我们使用一个简单的前馈神经网络基于多个记录预测单个患者杂音的存在和临床结果。
我们定性和定量地表明,MIL方法产生了有用的特征,可用于在多个时间实例上检测杂音,从而可通过心音图指导从业者。我们从杂音分类和临床结果方面分析了模型的第二阶段。在CirCor数据集(2022年乔治·B·穆迪生理网挑战赛的隐藏测试集,“Heart2Beat”团队,排名12 / 40)上使用PANN模型和人口统计学特征时,我们实现了0.714的加权准确率和13612的结果成本。
据我们所知,我们是首个证明MIL在心音图分类中有用性的。此外,我们展示了如何定量分析模型的可解释性,从而避免许多事后方法固有的确认偏差。最后,我们的总体结果证明了采用MIL结合手工特征来生成可解释特征以及实现有竞争力的分类性能的优点。