Suppr超能文献

基于时频和心音间期特征训练的 DropConnected 神经网络用于心音分类。

DropConnected neural networks trained on time-frequency and inter-beat features for classifying heart sounds.

机构信息

Engineering Department, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, United Kingdom.

出版信息

Physiol Meas. 2017 Jul 31;38(8):1645-1657. doi: 10.1088/1361-6579/aa6a3d.

Abstract

OBJECTIVE

Automatic heart sound analysis has the potential to improve the diagnosis of valvular heart diseases in the primary care phase, as well as in countries where there is neither the expertise nor the equipment to perform echocardiograms. An algorithm has been trained, on the PhysioNet open-access heart sounds database, to classify heart sounds as normal or abnormal.

APPROACH

The heart sounds are segmented using an open-source algorithm based on a hidden semi-Markov model. Following this, the time-frequency behaviour of a single heartbeat is characterized by using a novel implementation of the continuous wavelet transform, mel-frequency cepstral coefficients, and certain complexity measures. These features help detect the presence of any murmurs. A number of other features are also extracted to characterise the inter-beat behaviour of the heart sounds, which helps to recognize diseases such as arrhythmia. The extracted features are normalized and their dimensionality is reduced using principal component analysis. They are then used as the input to a fully-connected, two-hidden-layer neural network, trained by error backpropagation, and regularized with DropConnect.

MAIN RESULTS

This algorithm achieved an accuracy of 85.2% on the test data, which placed third in the PhysioNet/Computing in Cardiology Challenge (first place scored 86.0%). However, this is unrealistic of real-world performance, as the test data contained a dataset (dataset-e) in which normal and abnormal heart sounds were recorded with different stethoscopes. A 10-fold cross-validation study on the training data (excluding dataset-e) gives a mean score of 74.8%, which is a more realistic estimate of accuracy. With dataset-e excluded from training, the algorithm scored only 58.1% on the test data.

摘要

目的

自动心音分析有可能改善基层医疗阶段瓣膜性心脏病的诊断,也有可能改善那些既没有专业知识也没有设备进行超声心动图检查的国家的诊断情况。已经针对 PhysioNet 公开访问心音数据库中的心音训练了一种算法,以便将心音分类为正常或异常。

方法

使用基于隐半马尔可夫模型的开源算法对心音进行分段。在此之后,使用连续小波变换、梅尔频率倒谱系数和某些复杂度度量的新实现来描述单个心跳的时频行为。这些特征有助于检测任何杂音的存在。还提取了许多其他特征来描述心音的心跳间行为,这有助于识别心律失常等疾病。提取的特征经过归一化和主成分分析降维后,用作全连接、两层神经网络的输入,通过误差反向传播进行训练,并使用 DropConnect 正则化。

主要结果

该算法在测试数据上的准确率达到 85.2%,在 PhysioNet/Computing in Cardiology Challenge 中排名第三(第一名的得分为 86.0%)。然而,这与现实世界的性能并不相符,因为测试数据包含一个数据集(数据集-e),其中正常和异常心音是使用不同的听诊器记录的。对训练数据(不包括数据集-e)进行 10 倍交叉验证研究得出的平均得分为 74.8%,这是更现实的准确率估计。将数据集-e 排除在训练之外,算法在测试数据上的得分仅为 58.1%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验