Wu Yan, Qi Qi, Peng Tianlang, Yu Junjie, Ma Xinyu, Sun Yizhuo, Wang Yanling, Hu Xiaoshi, Yuan Yongjun, Qin Haiying
Key Laboratory of Novel Materials for Sensor of Zhejiang Province and New Energy Materials Research Center, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China.
College of Information Engineering & Art Design, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, P. R. China.
ACS Appl Mater Interfaces. 2024 Apr 3;16(13):16152-16163. doi: 10.1021/acsami.3c19174. Epub 2024 Mar 19.
The synthesis of anode materials plays an important role in determining the production efficiency, cost, and performance of lithium-ion batteries (LIBs). However, a low-cost, high-speed, scalable manufacturing process of the anode with the desired structural feature for practical technology adoption remains elusive. In this study, we propose a novel method called in situ flash shunt-electrothermal shock (SETS) which is controllable, fast, and energy-saving for synthesizing metal oxide-based materials. By using the example of direct electrothermal decomposition of ZIF-67 precursor loaded onto copper foil support, we achieve rapid (0.1-0.3 s) pyrolysis and generate porous hollow cubic structure material consisting of carbon-coated ultrasmall (10-15 nm) subcrystalline CoO/Co nanoparticles with controllable morphology. It was shown that CoO/Co@N-C exhibits prominent electrochemical performance with a high reversible capacity up to 1503.7 mA h g after 150 cycles at 0.2 A gand stable capacities up to 434.1 mA h g after 400 cycles at a high current density of 6 A g. This fabrication technique integrates the synthesis of active materials and the formation of electrode sheets into one process, thus simplifying the preparation of electrodes. Due to the simplicity and scalability of this process, it can be envisaged to apply it to the synthesis of metal oxide-based materials and to achieve large-scale production in a nanomanufacturing process.
负极材料的合成在决定锂离子电池(LIBs)的生产效率、成本和性能方面起着重要作用。然而,对于实际技术应用而言,具有所需结构特征的低成本、高速、可扩展的负极制造工艺仍然难以实现。在本研究中,我们提出了一种名为原位闪络分流电热冲击(SETS)的新方法,该方法可控、快速且节能,用于合成金属氧化物基材料。以负载在铜箔载体上的ZIF-67前驱体的直接电热分解为例,我们实现了快速(0.1 - 0.3秒)热解,并生成了由碳包覆的超小(10 - 15纳米)亚晶CoO/Co纳米颗粒组成的多孔空心立方结构材料,其形态可控。结果表明,CoO/Co@N-C在0.2 A g下经过150次循环后具有高达1503.7 mA h g的高可逆容量,在6 A g的高电流密度下经过400次循环后具有高达434.1 mA h g的稳定容量,表现出突出的电化学性能。这种制造技术将活性材料的合成和电极片的形成整合为一个过程,从而简化了电极的制备。由于该过程的简单性和可扩展性,可以设想将其应用于金属氧化物基材料的合成,并在纳米制造过程中实现大规模生产。