Suppr超能文献

基于时间冗余的 OCT 视频去噪。

Denoising OCT videos based on temporal redundancy.

机构信息

Department of Computer Engineering and Software Engineering, École Polytechnique de Montréal, Montreal, QC, H3T 1J4, Canada.

Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, H1T 2M4, Canada.

出版信息

Sci Rep. 2024 Mar 19;14(1):6605. doi: 10.1038/s41598-024-56935-0.

Abstract

The identification of eye diseases and their progression often relies on a clear visualization of the anatomy and on different metrics extracted from Optical Coherence Tomography (OCT) B-scans. However, speckle noise hinders the quality of rapid OCT imaging, hampering the extraction and reliability of biomarkers that require time series. By synchronizing the acquisition of OCT images with the timing of the cardiac pulse, we transform a low-quality OCT video into a clear version by phase-wrapping each frame to the heart pulsation and averaging frames that correspond to the same instant in the cardiac cycle. Here, we compare the performance of our one-cycle denoising strategy with a deep-learning architecture, Noise2Noise, as well as classical denoising methods such as BM3D and Non-Local Means (NLM). We systematically analyze different image quality descriptors as well as region-specific metrics to assess the denoising performance based on the anatomy of the eye. The one-cycle method achieves the highest denoising performance, increases image quality and preserves the high-resolution structures within the eye tissues. The proposed workflow can be readily implemented in a clinical setting.

摘要

眼部疾病的识别及其进展通常依赖于对解剖结构的清晰可视化,以及从光学相干断层扫描 (OCT) B 扫描中提取的不同指标。然而,散斑噪声会降低快速 OCT 成像的质量,从而影响需要时间序列的生物标志物的提取和可靠性。通过将 OCT 图像的采集与心脏脉搏的时间同步,我们通过将每一帧相位包裹到心脏搏动,并平均对应于心脏周期中同一瞬间的帧,将低质量的 OCT 视频转换为清晰的版本。在这里,我们将我们的单周期去噪策略的性能与深度学习架构 Noise2Noise 以及经典去噪方法(如 BM3D 和非局部均值 (NLM))进行了比较。我们系统地分析了不同的图像质量描述符以及特定于区域的指标,以根据眼睛的解剖结构评估去噪性能。单周期方法实现了最高的去噪性能,提高了图像质量并保留了眼组织内的高分辨率结构。所提出的工作流程可以很容易地在临床环境中实施。

相似文献

1
Denoising OCT videos based on temporal redundancy.
Sci Rep. 2024 Mar 19;14(1):6605. doi: 10.1038/s41598-024-56935-0.
2
Noise-imitation learning: unpaired speckle noise reduction for optical coherence tomography.
Phys Med Biol. 2024 Sep 3;69(18). doi: 10.1088/1361-6560/ad708c.
3
Triplet Cross-Fusion Learning for Unpaired Image Denoising in Optical Coherence Tomography.
IEEE Trans Med Imaging. 2022 Nov;41(11):3357-3372. doi: 10.1109/TMI.2022.3184529. Epub 2022 Oct 27.
5
Adaptive nonlocal means filtering based on local noise level for CT denoising.
Med Phys. 2014 Jan;41(1):011908. doi: 10.1118/1.4851635.
6
N2NSR-OCT: Simultaneous denoising and super-resolution in optical coherence tomography images using semisupervised deep learning.
J Biophotonics. 2021 Jan;14(1):e202000282. doi: 10.1002/jbio.202000282. Epub 2020 Oct 19.
7
DHNet: High-resolution and hierarchical network for cross-domain OCT speckle noise reduction.
Med Phys. 2022 Sep;49(9):5914-5928. doi: 10.1002/mp.15712. Epub 2022 Jun 1.
8
Optical coherence tomography image denoising using a generative adversarial network with speckle modulation.
J Biophotonics. 2020 Apr;13(4):e201960135. doi: 10.1002/jbio.201960135. Epub 2020 Feb 3.
10
SiameseGAN: A Generative Model for Denoising of Spectral Domain Optical Coherence Tomography Images.
IEEE Trans Med Imaging. 2021 Jan;40(1):180-192. doi: 10.1109/TMI.2020.3024097. Epub 2020 Dec 29.

本文引用的文献

1
Live 4D-OCT denoising with self-supervised deep learning.
Sci Rep. 2023 Apr 8;13(1):5760. doi: 10.1038/s41598-023-32695-1.
2
Mapping Pulsatile Optic Nerve Head Deformation Using OCT.
Ophthalmol Sci. 2022 Aug 6;2(4):100205. doi: 10.1016/j.xops.2022.100205. eCollection 2022 Dec.
3
Comparing Acute IOP-Induced Lamina Cribrosa Deformations Premortem and Postmortem.
Transl Vis Sci Technol. 2022 Dec 1;11(12):1. doi: 10.1167/tvst.11.12.1.
4
Differing Associations between Optic Nerve Head Strains and Visual Field Loss in Patients with Normal- and High-Tension Glaucoma.
Ophthalmology. 2023 Jan;130(1):99-110. doi: 10.1016/j.ophtha.2022.08.007. Epub 2022 Aug 11.
6
The false hope of current approaches to explainable artificial intelligence in health care.
Lancet Digit Health. 2021 Nov;3(11):e745-e750. doi: 10.1016/S2589-7500(21)00208-9.
8
Effect of Changing Heart Rate on the Ocular Pulse and Dynamic Biomechanical Behavior of the Optic Nerve Head.
Invest Ophthalmol Vis Sci. 2020 Apr 9;61(4):27. doi: 10.1167/iovs.61.4.27.
9
Noise reduction in optical coherence tomography images using a deep neural network with perceptually-sensitive loss function.
Biomed Opt Express. 2020 Jan 14;11(2):817-830. doi: 10.1364/BOE.379551. eCollection 2020 Feb 1.
10
Causability and explainability of artificial intelligence in medicine.
Wiley Interdiscip Rev Data Min Knowl Discov. 2019 Jul-Aug;9(4):e1312. doi: 10.1002/widm.1312. Epub 2019 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验