Chang Cheng, Liu Yu, Ho Lee Seung, Chiara Spadaro Maria, Koskela Kristopher M, Kleinhanns Tobias, Costanzo Tommaso, Arbiol Jordi, Brutchey Richard L, Ibáñez Maria
Institute of Science and Technology Austria Am Campus 1 3400 Klosterneuburg Austria.
Department of Chemistry University of Southern California Los Angeles CA 90089 USA.
Angew Chem Weinheim Bergstr Ger. 2022 Aug 26;134(35):e202207002. doi: 10.1002/ange.202207002. Epub 2022 Jul 21.
The broad implementation of thermoelectricity requires high-performance and low-cost materials. One possibility is employing surfactant-free solution synthesis to produce nanopowders. We propose the strategy of functionalizing "naked" particles' surface by inorganic molecules to control the nanostructure and, consequently, thermoelectric performance. In particular, we use bismuth thiolates to functionalize surfactant-free SnTe particles' surfaces. Upon thermal processing, bismuth thiolates decomposition renders SnTe-BiS nanocomposites with synergistic functions: 1) carrier concentration optimization by Bi doping; 2) Seebeck coefficient enhancement and bipolar effect suppression by energy filtering; and 3) lattice thermal conductivity reduction by small grain domains, grain boundaries and nanostructuration. Overall, the SnTe-BiS nanocomposites exhibit peak up to 1.3 at 873 K and an average of ≈0.6 at 300-873 K, which is among the highest reported for solution-processed SnTe.
热电的广泛应用需要高性能且低成本的材料。一种可能性是采用无表面活性剂的溶液合成法来制备纳米粉末。我们提出通过无机分子对“裸”颗粒表面进行功能化的策略,以控制纳米结构,进而控制热电性能。具体而言,我们使用硫醇铋对无表面活性剂的SnTe颗粒表面进行功能化。经过热处理后,硫醇铋分解形成具有协同功能的SnTe-BiS纳米复合材料:1)通过铋掺杂优化载流子浓度;2)通过能量过滤增强塞贝克系数并抑制双极效应;3)通过小晶粒域、晶界和纳米结构化降低晶格热导率。总体而言,SnTe-BiS纳米复合材料在873 K时峰值达到1.3,在300 - 873 K时平均约为0.6,这是溶液法制备的SnTe中报道的最高值之一。