Chang Cheng, Ibáñez Maria
Am Campus 1, Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
Materials (Basel). 2021 Sep 19;14(18):5416. doi: 10.3390/ma14185416.
Thermoelectric materials enable the direct conversion between heat and electricity. SnTe is a promising candidate due to its high charge transport performance. Here, we prepared SnTe nanocomposites by employing an aqueous method to synthetize SnTe nanoparticles (NP), followed by a unique surface treatment prior NP consolidation. This synthetic approach allowed optimizing the charge and phonon transport synergistically. The novelty of this strategy was the use of a soluble PbS molecular complex prepared using a thiol-amine solvent mixture that upon blending is adsorbed on the SnTe NP surface. Upon consolidation with spark plasma sintering, SnTe-PbS nanocomposite is formed. The presence of PbS complexes significantly compensates for the Sn vacancy and increases the average grain size of the nanocomposite, thus improving the carrier mobility. Moreover, lattice thermal conductivity is also reduced by the Pb and S-induced mass and strain fluctuation. As a result, an enhanced of ca. 0.8 is reached at 873 K. Our finding provides a novel strategy to conduct rational surface treatment on NP-based thermoelectrics.
热电材料能够实现热与电之间的直接转换。由于其高电荷传输性能,SnTe是一种很有前景的候选材料。在此,我们采用水相法合成SnTe纳米颗粒(NP),进而制备SnTe纳米复合材料,随后在NP固结之前进行独特的表面处理。这种合成方法能够协同优化电荷和声子传输。该策略的新颖之处在于使用了一种可溶性PbS分子络合物,它是用硫醇 - 胺溶剂混合物制备的,混合后吸附在SnTe NP表面。通过火花等离子烧结固结后,形成了SnTe - PbS纳米复合材料。PbS络合物的存在显著补偿了Sn空位并增加了纳米复合材料的平均晶粒尺寸,从而提高了载流子迁移率。此外,Pb和S引起的质量和应变波动也降低了晶格热导率。结果,在873 K时达到了约0.8的增强值。我们的发现为在基于NP的热电材料上进行合理的表面处理提供了一种新策略。