生物微流控学:生物材料与仿生设计。
Bio-microfluidics: biomaterials and biomimetic designs.
机构信息
Department of Biomedical Engineering, Tufts University Medford, Massachusetts 02155, USA.
出版信息
Adv Mater. 2010 Jan 12;22(2):249-60. doi: 10.1002/adma.200900821.
Bio-microfluidics applies biomaterials and biologically inspired structural designs (biomimetics) to microfluidic devices. Microfluidics, the techniques for constraining fluids on the micrometer and sub-micrometer scale, offer applications ranging from lab-on-a-chip to optofluidics. Despite this wealth of applications, the design of typical microfluidic devices imparts relatively simple, laminar behavior on fluids and is realized using materials and techniques from silicon planar fabrication. On the other hand, highly complex microfluidic behavior is commonplace in nature, where fluids with nonlinear rheology flow through chaotic vasculature composed from a range of biopolymers. In this Review, the current state of bio-microfluidic materials, designs and applications are examined. Biopolymers enable bio-microfluidic devices with versatile functionalization chemistries, flexibility in fabrication, and biocompatibility in vitro and in vivo. Polymeric materials such as alginate, collagen, chitosan, and silk are being explored as bulk and film materials for bio-microfluidics. Hydrogels offer options for mechanically functional devices for microfluidic systems such as self-regulating valves, microlens arrays and drug release systems, vital for integrated bio-microfluidic devices. These devices including growth factor gradients to study cell responses, blood analysis, biomimetic capillary designs, and blood vessel tissue culture systems, as some recent examples of inroads in the field that should lead the way in a new generation of microfluidic devices for bio-related needs and applications. Perhaps one of the most intriguing directions for the future will be fully implantable microfluidic devices that will also integrate with existing vasculature and slowly degrade to fully recapitulate native tissue structure and function, yet serve critical interim functions, such as tissue maintenance, drug release, mechanical support, and cell delivery.
生物微流控将生物材料和受生物启发的结构设计(仿生学)应用于微流控器件。微流控技术是在微米和亚微米尺度上限制流体的技术,其应用范围从芯片实验室到光流控。尽管有如此丰富的应用,典型的微流控器件的设计赋予了流体相对简单的层流行为,并使用来自硅平面制造的材料和技术来实现。另一方面,高度复杂的微流控行为在自然界中很常见,其中具有非线性流变学的流体通过由一系列生物聚合物组成的混沌脉管流动。在这篇综述中,检查了生物微流控材料、设计和应用的现状。生物聚合物使生物微流控器件具有多功能的功能化化学、制造的灵活性以及体外和体内的生物相容性。海藻酸盐、胶原蛋白、壳聚糖和丝等聚合物材料正被探索作为生物微流控的块状和薄膜材料。水凝胶为微流控系统的机械功能器件提供了选择,例如自调节阀、微透镜阵列和药物释放系统,这些对于集成生物微流控器件至关重要。这些器件包括生长因子梯度以研究细胞反应、血液分析、仿生毛细血管设计和血管组织培养系统,作为该领域的一些最新示例,应该为新一代生物相关需求和应用的微流控器件铺平道路。未来最引人入胜的方向之一可能是完全可植入的微流控器件,它还将与现有的脉管系统集成,并缓慢降解以完全再现天然组织的结构和功能,同时还能发挥关键的临时功能,如组织维持、药物释放、机械支撑和细胞输送。