Suppr超能文献

使用多状态疾病模型预测多癌种早期检测对晚期发病的影响。

Projecting the Impact of Multi-Cancer Early Detection on Late-Stage Incidence Using Multi-State Disease Modeling.

机构信息

Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, Oregon.

Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington.

出版信息

Cancer Epidemiol Biomarkers Prev. 2024 Jun 3;33(6):830-837. doi: 10.1158/1055-9965.EPI-23-1470.

Abstract

BACKGROUND

Downstaging-reduction in late-stage incidence-has been proposed as an endpoint in randomized trials of multi-cancer early detection (MCED) tests. How downstaging depends on test performance and follow-up has been studied for some cancers but is understudied for cancers without existing screening and for MCED tests that include these cancer types.

METHODS

We develop a model for cancer natural history that can be fit to registry incidence patterns under minimal inputs and can be estimated for solid cancers without existing screening. Fitted models are combined to project downstaging in MCED trials given sensitivity for early- and late-stage cancers. We fit models for 12 cancers using incidence data from the Surveillance, Epidemiology, and End Results program and project downstaging in a simulated trial under variable preclinical latencies and test sensitivities.

RESULTS

A proof-of-principle lung cancer model approximated downstaging in the National Lung Screening Trial. Given published stage-specific sensitivities for 12 cancers, we projected downstaging ranging from 21% to 43% across plausible preclinical latencies in a hypothetical 3-screen MCED trial. Late-stage incidence reductions manifest soon after screening begins. Downstaging increases with longer early-stage latency or higher early-stage test sensitivity.

CONCLUSIONS

Even short-term MCED trials could produce substantial downstaging given adequate early-stage test sensitivity.

IMPACT

Modeling the natural histories of cancers without existing screening facilitates analysis of novel MCED products and trial designs. The framework informs expectations of MCED impact on disease stage at diagnosis and could serve as a building block for designing trials with late-stage incidence as the primary endpoint.

摘要

背景

在多癌种早期检测(MCED)试验的随机试验中,降期(晚期病例减少)已被提议作为终点。关于测试性能和随访如何影响降期的研究已经在某些癌症中进行,但对于没有现有筛查的癌症以及包含这些癌症类型的 MCED 测试,研究还不够充分。

方法

我们开发了一种癌症自然史模型,可以根据最少的输入拟合登记发病率模式,并且可以在没有现有筛查的情况下估计实体癌症。拟合模型被组合在一起,根据早期和晚期癌症的敏感性来预测 MCED 试验中的降期。我们使用监测、流行病学和最终结果计划中的发病率数据为 12 种癌症拟合模型,并在可变的临床前潜伏期和测试敏感性下模拟试验中预测降期。

结果

一种肺癌模型的原理验证近似于国家肺癌筛查试验中的降期。根据 12 种癌症的特定阶段敏感性,我们预测在假设的 3 次 MCED 试验中,在合理的临床前潜伏期范围内,降期范围为 21%至 43%。晚期病例减少在开始筛查后很快显现。降期随着早期阶段潜伏期的延长或早期阶段测试敏感性的提高而增加。

结论

即使是短期的 MCED 试验,如果早期阶段测试的敏感性足够高,也可能产生显著的降期效果。

影响

对没有现有筛查的癌症的自然史进行建模有助于分析新型 MCED 产品和试验设计。该框架为 MCED 对诊断时疾病阶段的影响提供了预期,并可以作为以晚期病例减少为主要终点的试验设计的基础。

相似文献

4
Modeled Reductions in Late-stage Cancer with a Multi-Cancer Early Detection Test.多癌种早期检测试验可降低晚期癌症的发生率。
Cancer Epidemiol Biomarkers Prev. 2021 Mar;30(3):460-468. doi: 10.1158/1055-9965.EPI-20-1134. Epub 2020 Dec 16.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验