Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States.
Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States.
Biochemistry. 2024 Apr 2;63(7):939-951. doi: 10.1021/acs.biochem.3c00561. Epub 2024 Mar 20.
MshA is a GT-B glycosyltransferase catalyzing the first step in the biosynthesis of mycothiol. While many GT-B enzymes undergo an open-to-closed transition, MshA is unique because its 97° rotation is beyond the usual range of 10-25°. Molecular dynamics (MD) simulations were carried out for MshA in both ligand bound and unbound states to investigate the effect of ligand binding on localized protein dynamics and its conformational free energy landscape. Simulations showed that both the unliganded "opened" and liganded "closed" forms of the enzyme sample a wide degree of dihedral angles and interdomain distances with relatively low overlapping populations. Calculation of the free energy surface using replica exchange MD for the apo "opened" and an artificial generated apo "closed" structure revealed overlaps in the geometries sampled, allowing calculation of a barrier of 2 kcal/mol for the open-to-closed transition in the absence of ligands. MD simulations of fully liganded MshA revealed a smaller sampling of the dihedral angles. The localized protein fluctuation changes suggest that UDP-GlcNAc binding activates the motions of loops in the 1-l--inositol-1-phosphate (I1P)-binding site despite little change in the interactions with UDP-GlcNAc. Circular dichroism, intrinsic fluorescence spectroscopy, and mutagenesis studies were used to confirm the ligand-induced structural changes in MshA. The results support a proposed mechanism where UDP-GlcNAc binds with rigid interactions to the C-terminal domain of MshA and activates flexible loops in the N-terminal domain for binding and positioning of I1P. This model can be used for future structure-based drug development of inhibitors of the mycothiol biosynthetic pathway.
MshA 是一种 GT-B 糖基转移酶,催化分枝菌酸生物合成的第一步。虽然许多 GT-B 酶经历开-关转变,但 MshA 是独特的,因为它的 97°旋转超出了通常的 10-25°范围。进行了配体结合和未结合状态下的 MshA 的分子动力学 (MD) 模拟,以研究配体结合对局部蛋白质动力学及其构象自由能景观的影响。模拟表明,酶的未配体“打开”和配体“关闭”形式都广泛地采样了二面角和结构域之间的距离,且重叠种群相对较低。使用 replica exchange MD 为 apo“打开”和人工生成的 apo“关闭”结构计算自由能表面,揭示了采样几何形状的重叠,允许在没有配体的情况下计算打开到关闭转变的 2 kcal/mol 屏障。完全配体结合的 MshA 的 MD 模拟揭示了更小的二面角采样。局部蛋白质波动变化表明,尽管 UDP-GlcNAc 与 UDP-GlcNAc 的相互作用几乎没有变化,但 UDP-GlcNAc 结合激活了 I1P 结合位点中环的运动。圆二色性、内源荧光光谱和突变研究用于证实 MshA 中配体诱导的结构变化。结果支持了一种提出的机制,即 UDP-GlcNAc 与 MshA 的 C 末端结构域结合具有刚性相互作用,并激活 N 末端结构域中的柔性环,用于结合和定位 I1P。该模型可用于分枝菌酸生物合成途径抑制剂的基于结构的药物开发。