Suppr超能文献

运用失效模式与影响分析(Failure Modes and Effects Analysis,FMEA)对放射肿瘤学勒索软件攻击响应风险进行分析。

Radiation Oncology Ransomware Attack Response Risk Analysis Using Failure Modes and Effects Analysis.

机构信息

Department of Radiation Oncology, Thomas Jefferson University, Philadelphia Pennsylvania.

Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado.

出版信息

Pract Radiat Oncol. 2024 Sep-Oct;14(5):e407-e415. doi: 10.1016/j.prro.2024.03.001. Epub 2024 Mar 19.

Abstract

PURPOSE

There have been numerous significant ransomware attacks impacting Radiation Oncology in the past 5 years. Research into ransomware attack response in Radiation Oncology has consisted of case reports and descriptive articles and has lacked quantitative studies. The purpose of this work was to identify the significant safety risks to patients being treated with radiation therapy during a ransomware attack scenario, using Failure Modes and Effects Analysis.

METHODS AND MATERIALS

A multi-institutional and multidisciplinary team conducted a Failure Modes and Effects Analysis by developing process maps and using Risk Priority Number (RPN) scores to quantify the increased likelihood of incidents in a ransomware attack scenario. The situation that was simulated was a ransomware attack that had removed the capability to access the Record and Verify (R&V) system. Five situations were considered: 1) a standard treatment of a patient with and without an R&V, 2) a standard treatment of a patient for the first fraction right after the R&V capabilities are disabled, and 3) 3 situations in which a plan modification was required. RPN scores were compared with and without R&V functionality.

RESULTS

The data indicate that RPN scores increased by 71% (range, 38%-96%) when R&V functionality is disabled compared with a nonransomware attack state where R&V functionality is available. The failure modes with the highest RPN in the simulated ransomware attack state included incorrectly identifying patients on treatment, incorrectly identifying where a patient is in their course of treatment, treating the incorrect patient, and incorrectly tracking delivered fractions.

CONCLUSIONS

The presented study quantifies the increased risk of incidents when treating in a ransomware attack state, identifies key failure modes that should be prioritized when preparing for a ransomware attack, and provides data that can be used to guide future ransomware resiliency research.

摘要

目的

在过去的 5 年中,已经发生了许多重大的勒索软件攻击事件,影响了放射肿瘤学。放射肿瘤学中对勒索软件攻击的反应研究包括案例报告和描述性文章,缺乏定量研究。本研究的目的是使用失效模式和影响分析(Failure Modes and Effects Analysis)来确定在勒索软件攻击场景下对接受放射治疗的患者造成的重大安全风险。

方法和材料

一个多机构和多学科的团队通过开发流程图并使用风险优先数(RPN)得分来量化在勒索软件攻击场景中事件发生的可能性,进行了失效模式和影响分析。模拟的情况是勒索软件攻击已删除访问记录和验证(Record and Verify,R&V)系统的功能。考虑了五种情况:1)在有和没有 R&V 的情况下对患者进行标准治疗,2)在 R&V 功能被禁用后立即对患者进行首次分次治疗,以及 3)需要进行 3 种计划修改的情况。比较了有和没有 R&V 功能的 RPN 得分。

结果

数据表明,与 R&V 功能可用的非勒索软件攻击状态相比,当 R&V 功能被禁用时,RPN 得分增加了 71%(范围为 38%-96%)。在模拟的勒索软件攻击状态下,RPN 得分最高的失效模式包括错误识别治疗中的患者、错误识别患者在治疗过程中的位置、治疗错误的患者以及错误跟踪已完成的分次治疗。

结论

本研究量化了在勒索软件攻击状态下治疗时事件风险增加的情况,确定了在准备勒索软件攻击时应优先考虑的关键失效模式,并提供了可用于指导未来勒索软件恢复力研究的数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验