在接受心胸外科手术的二叶式主动脉瓣和三叶式主动脉瓣患者中,升主动脉扩张的预测性机器学习模型:一项前瞻性、单中心和观察性研究。

Predictive machine learning models for ascending aortic dilatation in patients with bicuspid and tricuspid aortic valves undergoing cardiothoracic surgery: a prospective, single-centre and observational study.

机构信息

Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden

Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.

出版信息

BMJ Open. 2024 Mar 20;14(3):e067977. doi: 10.1136/bmjopen-2022-067977.

Abstract

OBJECTIVES

The objective of this study was to develop clinical classifiers aiming to identify prevalent ascending aortic dilatation in patients with bicuspid aortic valve (BAV) and tricuspid aortic valve (TAV).

DESIGN AND SETTING

A prospective, single-centre and observational cohort.

PARTICIPANTS

The study involved 543 BAV and 491 TAV patients with aortic valve disease and/or ascending aortic dilatation, excluding those with coronary artery disease, undergoing cardiothoracic surgery at the Karolinska University Hospital (Sweden).

MAIN OUTCOME MEASURES

Predictors of high risk of ascending aortic dilatation (defined as ascending aorta with a diameter above 40 mm) were identified through the application of machine learning algorithms and classic logistic regression models.

EXPOSURES

Comprehensive multidimensional data, including valve morphology, clinical information, family history of cardiovascular diseases, prevalent diseases, demographic details, lifestyle factors, and medication.

RESULTS

BAV patients, with an average age of 60.4±12.4 years, showed a higher frequency of aortic dilatation (45.3%) compared with TAV patients, who had an average age of 70.4±9.1 years (28.9% dilatation, p <0.001). Aneurysm prediction models for TAV patients exhibited mean area under the receiver-operating-characteristic curve (AUC) values above 0.8, with the absence of aortic stenosis being the primary predictor, followed by diabetes and high-sensitivity C reactive protein. Conversely, prediction models for BAV patients resulted in AUC values between 0.5 and 0.55, indicating low usefulness for predicting aortic dilatation. Classification results remained consistent across all machine learning algorithms and classic logistic regression models.

CONCLUSION AND RECOMMENDATION

Cardiovascular risk profiles appear to be more predictive of aortopathy in TAV patients than in patients with BAV. This adds evidence to the fact that BAV-associated and TAV-associated aortopathy involves different pathways to aneurysm formation and highlights the need for specific aneurysm preventions in these patients. Further, our results highlight that machine learning approaches do not outperform classical prediction methods in addressing complex interactions and non-linear relations between variables.

摘要

目的

本研究旨在开发临床分类器,以识别二叶式主动脉瓣(BAV)和三叶式主动脉瓣(TAV)患者中常见的升主动脉扩张。

设计和设置

前瞻性、单中心和观察性队列研究。

参与者

该研究纳入了在瑞典卡罗林斯卡大学医院接受心胸外科手术的 543 例 BAV 和 491 例 TAV 伴主动脉瓣疾病和/或升主动脉扩张的患者,排除了患有冠心病的患者。

主要观察指标

通过应用机器学习算法和经典逻辑回归模型,确定升主动脉扩张高危的预测因子(定义为升主动脉直径大于 40mm)。

暴露因素

包括瓣膜形态、临床信息、心血管疾病家族史、常见疾病、人口统计学细节、生活方式因素和药物使用情况在内的综合多维数据。

结果

平均年龄为 60.4±12.4 岁的 BAV 患者主动脉扩张的发生率(45.3%)高于平均年龄为 70.4±9.1 岁的 TAV 患者(28.9%扩张,p<0.001)。TAV 患者的动脉瘤预测模型的受试者工作特征曲线下面积(AUC)平均值均高于 0.8,其中无主动脉狭窄是主要预测因子,其次是糖尿病和高敏 C 反应蛋白。相反,BAV 患者的预测模型得出的 AUC 值在 0.5 到 0.55 之间,表明对预测主动脉扩张的作用有限。分类结果在所有机器学习算法和经典逻辑回归模型中均保持一致。

结论和建议

心血管风险特征似乎更能预测 TAV 患者的主动脉病变,而不是 BAV 患者。这进一步证实了 BAV 相关和 TAV 相关主动脉病变涉及不同的动脉瘤形成途径,并强调了这些患者需要进行特定的动脉瘤预防。此外,我们的结果还强调,机器学习方法在处理变量之间的复杂相互作用和非线性关系方面并不优于经典预测方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/783c/10961501/aa10751dd123/bmjopen-2022-067977f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索