Suppr超能文献

用于纤维网络参数研究的空间统计框架:在正常和活化成纤维细胞纤连蛋白沉积中的应用

A spatial statistical framework for the parametric study of fiber networks: Application to fibronectin deposition by normal and activated fibroblasts.

作者信息

Grapa Anca-Ioana, Efthymiou Georgios, Van Obberghen-Schilling Ellen, Blanc-Féraud Laure, Descombes Xavier

机构信息

Université Côte d'Azur, INRIA, CNRS, i3S, France.

Université Côte d'Azur, INSERM, CNRS, iBV, France.

出版信息

Biol Imaging. 2023 Nov 13;3:e25. doi: 10.1017/S2633903X23000247. eCollection 2023.

Abstract

Due to the complex architectural diversity of biological networks, there is an increasing need to complement statistical analyses with a qualitative and local description of their spatial properties. One such network is the extracellular matrix (ECM), a biological scaffold for which changes in its spatial organization significantly impact tissue functions in health and disease. Quantifying variations in the fibrillar architecture of major ECM proteins should considerably advance our understanding of the link between tissue structure and function. Inspired by the analysis of functional magnetic resonance imaging (fMRI) images, we propose a novel statistical analysis approach embedded into a machine learning paradigm, to measure and detect local variations of meaningful ECM parameters. We show that parametric maps representing fiber length and pore directionality can be analyzed within the proposed framework to differentiate among various tissue states. The parametric maps are derived from graph-based representations that reflect the network architecture of fibronectin (FN) fibers in a normal, or disease-mimicking in vitro setting. Such tools can potentially lead to a better characterization of dynamic matrix networks within fibrotic tumor microenvironments and contribute to the development of better imaging modalities for monitoring their remodeling and normalization following therapeutic intervention.

摘要

由于生物网络复杂的结构多样性,越来越需要用对其空间特性的定性和局部描述来补充统计分析。细胞外基质(ECM)就是这样一种网络,它是一种生物支架,其空间组织的变化会显著影响健康和疾病状态下的组织功能。量化主要ECM蛋白纤维结构的变化应该能极大地推动我们对组织结构与功能之间联系的理解。受功能磁共振成像(fMRI)图像分析的启发,我们提出一种嵌入机器学习范式的新型统计分析方法,以测量和检测有意义的ECM参数的局部变化。我们表明,在所提出的框架内可以分析表示纤维长度和孔隙方向性的参数图,以区分各种组织状态。这些参数图源自基于图形的表示,这些表示反映了正常或模拟疾病的体外环境中纤连蛋白(FN)纤维的网络结构。此类工具可能会更好地表征纤维化肿瘤微环境中的动态基质网络,并有助于开发更好的成像方式来监测治疗干预后它们的重塑和正常化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eec/10951922/a780e133b67f/S2633903X23000247_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验