Suppr超能文献

整合细胞与胶原纤维的空间图像分析

Integrated Cells and Collagen Fibers Spatial Image Analysis.

作者信息

Vasiukov Georgii, Novitskaya Tatiana, Senosain Maria-Fernanda, Camai Alex, Menshikh Anna, Massion Pierre, Zijlstra Andries, Novitskiy Sergey

机构信息

Department of Medicine, Division of Allergy, Pulmonary, Critical Care Medicine, Vanderbilt, University Medical Center, Nashville, TN, United States.

Department of Pathology, Microbiology, And Immunology, Vanderbilt University Medical Center, Nashville, TN, United States.

出版信息

Front Bioinform. 2021 Nov;1. doi: 10.3389/fbinf.2021.758775. Epub 2021 Nov 8.

Abstract

Modern technologies designed for tissue structure visualization like brightfield microscopy, fluorescent microscopy, mass cytometry imaging (MCI) and mass spectrometry imaging (MSI) provide large amounts of quantitative and spatial information about cells and tissue structures like vessels, bronchioles etc. Many published reports have demonstrated that the structural features of cells and extracellular matrix (ECM) and their interactions strongly predict disease development and progression. Computational image analysis methods in combination with spatial analysis and machine learning can reveal novel structural patterns in normal and diseased tissue. Here, we have developed a Python package designed for integrated analysis of cells and ECM in a spatially dependent manner. The package performs segmentation, labeling and feature analysis of ECM fibers, combines this information with pre-generated single-cell based datasets and realizes cell-cell and cell-fiber spatial analysis. To demonstrate performance and compatibility of our computational tool, we integrated it with a pipeline designed for cell segmentation, classification, and feature analysis in the KNIME analytical platform. For validation, we used a set of mouse mammary gland tumors and human lung adenocarcinoma tissue samples stained for multiple cellular markers and collagen as the main ECM protein. The developed package provides sufficient performance and precision to be used as a novel method to investigate cell-ECM relationships in the tissue, as well as detect structural patterns correlated with specific disease outcomes.

摘要

为组织结构可视化设计的现代技术,如明场显微镜、荧光显微镜、质谱流式细胞术成像(MCI)和质谱成像(MSI),可提供大量有关细胞和组织结构(如血管、细支气管等)的定量和空间信息。许多已发表的报告表明,细胞和细胞外基质(ECM)的结构特征及其相互作用能有力地预测疾病的发展和进程。结合空间分析和机器学习的计算图像分析方法,可以揭示正常组织和病变组织中的新结构模式。在此,我们开发了一个Python软件包,用于以空间依赖的方式对细胞和ECM进行综合分析。该软件包对ECM纤维进行分割、标记和特征分析,将这些信息与预先生成的基于单细胞的数据集相结合,并实现细胞-细胞和细胞-纤维的空间分析。为了展示我们计算工具的性能和兼容性,我们将其与KNIME分析平台中设计用于细胞分割、分类和特征分析的工作流程集成在一起。为了进行验证,我们使用了一组经多种细胞标记物和作为主要ECM蛋白的胶原蛋白染色的小鼠乳腺肿瘤和人肺腺癌组织样本。所开发的软件包具有足够的性能和精度,可作为一种研究组织中细胞-ECM关系以及检测与特定疾病结果相关的结构模式的新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46a3/9581007/b4d8fb99ce7e/fbinf-01-758775-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验