Suppr超能文献

验证病毒病原体的灭活效果,重点关注 SARS-CoV-2,以确保安全地从高防护实验室转移样本。

Validating the inactivation of viral pathogens with a focus on SARS-CoV-2 to safely transfer samples from high-containment laboratories.

机构信息

Global Health Research Complex, Division of Research, Texas A&M University, College Station, TX, United States.

Department of Biological Sciences, Texas A&M University, College Station, TX, United States.

出版信息

Front Cell Infect Microbiol. 2024 Mar 6;14:1292467. doi: 10.3389/fcimb.2024.1292467. eCollection 2024.

Abstract

INTRODUCTION

Pathogen leak from a high-containment laboratory seriously threatens human safety, animal welfare, and environmental security. Transportation of pathogens from a higher (BSL4 or BSL3) to a lower (BSL2) containment laboratory for downstream experimentation requires complete pathogen inactivation. Validation of pathogen inactivation is necessary to ensure safety during transportation. This study established a validation strategy for virus inactivation.

METHODS

SARS-CoV-2 wild type, delta, and omicron variants underwent heat treatment at 95°C for 10 minutes using either a hot water bath or a thermocycler. To validate the inactivation process, heat-treated viruses, and untreated control samples were incubated with A549-hACE2 and Vero E6-TMPRSS2-T2A-ACE2 cells. The cells were monitored for up to 72 hours for any cytopathic effects, visually and under a microscope, and for virus genome replication via RT-qPCR. The quality of post-treated samples was assessed for suitability in downstream molecular testing applications.

RESULTS

Heat treatment at 95°C for 10 minutes effectively inactivated SARS-CoV-2 variants. The absence of cytopathic effects, coupled with the inability of virus genome replication, validated the efficacy of the inactivation process. Furthermore, the heat-treated samples proved to be qualified for COVID-19 antigen testing, RT-qPCR, and whole-genome sequencing.

DISCUSSION

By ensuring the safety of sample transportation for downstream experimentation, this validation approach enhances biosecurity measures. Considerations for potential limitations, comparisons with existing inactivation methods, and broader implications of the findings are discussed.

摘要

简介

高生物安全实验室的病原体泄漏严重威胁人类安全、动物福利和环境安全。将病原体从高等级(BSL4 或 BSL3)生物安全实验室运输到低等级(BSL2)生物安全实验室进行下游实验需要完全使病原体失活。对病原体失活的验证是确保运输过程中安全的必要条件。本研究建立了一种病毒失活动力学验证策略。

方法

SARS-CoV-2 野生型、德尔塔和奥密克戎变异株在 95°C 下分别采用水浴或热循环仪进行 10 分钟的热处理。为了验证失活过程,将热处理后的病毒和未经处理的对照样品与 A549-hACE2 和 Vero E6-TMPRSS2-T2A-ACE2 细胞孵育。在长达 72 小时的时间内,通过肉眼观察和显微镜观察以及 RT-qPCR 检测病毒基因组复制,监测细胞是否出现细胞病变效应。评估处理后样品的质量,以确定其是否适用于下游分子检测应用。

结果

95°C 热处理 10 分钟可有效使 SARS-CoV-2 变异株失活。无细胞病变效应,加上病毒基因组复制的缺失,验证了失活过程的有效性。此外,热处理后的样品被证明可用于 COVID-19 抗原检测、RT-qPCR 和全基因组测序。

讨论

通过确保下游实验样本运输的安全性,这种验证方法增强了生物安全措施。讨论了潜在局限性的考虑因素、与现有失活方法的比较以及研究结果的更广泛意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba2b/10951993/02a6b67f5e51/fcimb-14-1292467-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验