Richter Felix Ulrich, Sinev Ivan, Zhou Senlu, Leitis Aleksandrs, Oh Sang-Hyun, Tseng Ming Lun, Kivshar Yuri, Altug Hatice
Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland.
Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.
Adv Mater. 2024 Jun;36(25):e2314279. doi: 10.1002/adma.202314279. Epub 2024 Apr 9.
Surface-enhanced infrared absorption spectroscopy (SEIRA) has emerged as a powerful technique for ultrasensitive chemical-specific analysis. SEIRA can be realized by employing metasurfaces that can enhance light-matter interactions in the spectral bands of molecular vibrations. Increasing sample complexity emphasizes the need for metasurfaces that can operate simultaneously at different spectral bands, both accessing rich spectral information over a broad band, and resolving subtle differences in the absorption fingerprints through narrow-band resonances. Here, a novel concept of resonance-gradient metasurfaces is introduced, where the required spectral selectivity is achieved via local high-quality-factor (high-Q) resonances, while the continuous coverage of a broad band is enabled by the gradual adjustment of the unit-cell dimensions along the planar structure. The highly tailorable design of the gradient metasurfaces provides flexibility for shaping the spectral sampling density to match the relevant bands of target analytes while keeping a compact device footprint. The versatility of the gradient metasurfaces is demonstrated through several sensing scenarios, including polymer mixture deconvolution, detecting a multistep bioassay, and identification of the onset of vibrational strong coupling regime. The proposed gradient-resonance platform significantly contributes to the rapidly evolving landscape of nonlocal metasurfaces, enabling applications in molecular detection and analysis of fundamental light-matter interaction phenomena.
表面增强红外吸收光谱(SEIRA)已成为一种用于超灵敏化学特异性分析的强大技术。通过采用能够增强分子振动光谱带中光与物质相互作用的超表面,可以实现SEIRA。样品复杂性的增加凸显了对能够在不同光谱带同时运行的超表面的需求,既要在宽带范围内获取丰富的光谱信息,又要通过窄带共振分辨吸收指纹中的细微差异。在此,引入了一种共振梯度超表面的新概念,其中所需的光谱选择性通过局部高品质因数(高Q)共振实现,而宽带的连续覆盖则通过沿平面结构逐渐调整单元尺寸来实现。梯度超表面的高度可定制设计为塑造光谱采样密度提供了灵活性,以匹配目标分析物的相关波段,同时保持紧凑的设备尺寸。通过几种传感场景展示了梯度超表面的多功能性,包括聚合物混合物解卷积、检测多步生物测定以及识别振动强耦合 regime 的起始。所提出的梯度共振平台对非局部超表面快速发展的格局做出了重大贡献,能够应用于分子检测和基本光与物质相互作用现象的分析。