Suppr超能文献

采用双梯度超表面的连续光谱和耦合强度编码

Continuous spectral and coupling-strength encoding with dual-gradient metasurfaces.

作者信息

Aigner Andreas, Weber Thomas, Wester Alwin, Maier Stefan A, Tittl Andreas

机构信息

Chair in Hybrid Nanosystems, Nano-Institute Munich, Faculty of Physics, Ludwig-Maximilians-Universtität München, Munich, Germany.

School of Physics and Astronomy, Monash University, Clayton, Victoria, Australia.

出版信息

Nat Nanotechnol. 2024 Dec;19(12):1804-1812. doi: 10.1038/s41565-024-01767-2. Epub 2024 Aug 26.

Abstract

To control and enhance light-matter interactions at the nanoscale, two parameters are central: the spectral overlap between an optical cavity mode and the material's spectral features (for example, excitonic or molecular absorption lines), and the quality factor of the cavity. Controlling both parameters simultaneously would enable the investigation of systems with complex spectral features, such as multicomponent molecular mixtures or heterogeneous solid-state materials. So far, it has been possible only to sample a limited set of data points within this two-dimensional parameter space. Here we introduce a nanophotonic approach that can simultaneously and continuously encode the spectral and quality-factor parameter space within a compact spatial area. We use a dual-gradient metasurface design composed of a two-dimensional array of smoothly varying subwavelength nanoresonators, each supporting a unique mode based on symmetry-protected bound states in the continuum. This results in 27,500 distinct modes and a mode density approaching the theoretical upper limit for metasurfaces. By applying our platform to surface-enhanced molecular spectroscopy, we find that the optimal quality factor for maximum sensitivity depends on the amount of analyte, enabling effective molecular detection regardless of analyte concentration within a single dual-gradient metasurface. Our design provides a method to analyse the complete spectral and coupling-strength parameter space of complex material systems for applications such as photocatalysis, chemical sensing and entangled photon generation.

摘要

为了在纳米尺度上控制和增强光与物质的相互作用,有两个参数至关重要:光学腔模式与材料光谱特征(例如,激子或分子吸收线)之间的光谱重叠,以及腔的品质因数。同时控制这两个参数将能够研究具有复杂光谱特征的系统,例如多组分分子混合物或异质固态材料。到目前为止,在这个二维参数空间内只能对有限的一组数据点进行采样。在此,我们介绍一种纳米光子学方法,它可以在一个紧凑的空间区域内同时且连续地对光谱和品质因数参数空间进行编码。我们使用一种双梯度超表面设计,该设计由二维排列的、亚波长纳米谐振器组成,这些谐振器平滑变化,每个都基于连续统中对称保护的束缚态支持一种独特的模式。这产生了27500种不同的模式,并且模式密度接近超表面的理论上限。通过将我们的平台应用于表面增强分子光谱学,我们发现实现最大灵敏度的最佳品质因数取决于分析物的量,从而能够在单个双梯度超表面内实现对分析物浓度无关的有效分子检测。我们的设计提供了一种方法,用于分析复杂材料系统的完整光谱和耦合强度参数空间,以用于光催化、化学传感和纠缠光子产生等应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ac6/11638065/e904d24e355d/41565_2024_1767_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验