Suppr超能文献

开发机器学习算法预测机器人辅助根治性前列腺切除术后尿失禁的风险。

Development of Machine Learning Algorithm to Predict the Risk of Incontinence After Robot-Assisted Radical Prostatectomy.

机构信息

Division of Urology, Department of Oncology, San Luigi Gonzaga Hospital, University of Turin, Turin, Italy.

Department of Chemistry, University of Turin, Turin, Italy.

出版信息

J Endourol. 2024 Aug;38(8):871-878. doi: 10.1089/end.2024.0057. Epub 2024 Mar 21.

Abstract

Predicting postoperative incontinence beforehand is crucial for intensified and personalized rehabilitation after robot-assisted radical prostatectomy. Although nomograms exist, their retrospective limitations highlight artificial intelligence (AI)'s potential. This study seeks to develop a machine learning algorithm using robot-assisted radical prostatectomy (RARP) data to predict postoperative incontinence, advancing personalized care. In this propsective observational study, patients with localized prostate cancer undergoing RARP between April 2022 and January 2023 were assessed. Preoperative variables included age, body mass index, prostate-specific antigen (PSA) levels, digital rectal examination (DRE) results, Gleason score, International Society of Urological Pathology grade, and continence and potency questionnaires responses. Intraoperative factors, postoperative outcomes, and pathological variables were recorded. Urinary continence was evaluated using the Expanded Prostate cancer Index Composite questionnaire, and machine learning models (XGBoost, Random Forest, Logistic Regression) were explored to predict incontinence risk. The chosen model's SHAP values elucidated variables impacting predictions. A dataset of 227 patients undergoing RARP was considered for the study. Post-RARP complications were predominantly low grade, and urinary continence rates were 74.2%, 80.7%, and 91.4% at 7, 13, and 90 days after catheter removal, respectively. Employing machine learning, XGBoost proved the most effective in predicting postoperative incontinence risk. Significant variables identified by the algorithm included nerve-sparing approach, age, DRE, and total PSA. The model's threshold of 0.67 categorized patients into high or low risk, offering personalized predictions about the risk of incontinence after surgery. Predicting postoperative incontinence is crucial for tailoring rehabilitation after RARP. Machine learning algorithm, particularly XGBoost, can effectively identify those variables more heavily, impacting the outcome of postoperative continence, allowing to build an AI-driven model addressing the current challenges in post-RARP rehabilitation.

摘要

预测机器人辅助前列腺根治术后的尿失禁至关重要,这有助于强化和个性化康复。虽然有列线图,但它们的回顾性局限性突显了人工智能(AI)的潜力。本研究旨在使用机器人辅助前列腺根治术(RARP)数据开发机器学习算法,以预测术后尿失禁,从而推进个性化护理。

在这项前瞻性观察研究中,评估了 2022 年 4 月至 2023 年 1 月期间接受 RARP 的局限性前列腺癌患者。术前变量包括年龄、体重指数、前列腺特异性抗原(PSA)水平、直肠指检(DRE)结果、Gleason 评分、国际泌尿病理学会分级和控尿及性功能问卷的应答。记录了术中因素、术后结果和病理变量。采用扩展前列腺癌指数复合问卷评估尿控,探索机器学习模型(XGBoost、随机森林、Logistic 回归)预测失禁风险。选择的模型的 SHAP 值阐明了影响预测的变量。

研究考虑了 227 例接受 RARP 的患者的数据。RARP 后并发症主要为低级别,尿管拔除后 7、13 和 90 天的尿控率分别为 74.2%、80.7%和 91.4%。采用机器学习,XGBoost 被证明是预测术后尿失禁风险的最有效方法。该算法确定的重要变量包括神经保留方法、年龄、DRE 和总 PSA。模型的阈值为 0.67,将患者分为高风险或低风险组,对术后尿失禁风险进行个性化预测。

预测术后尿失禁对 RARP 后康复至关重要。机器学习算法,特别是 XGBoost,可以有效地识别出影响术后尿控结果的变量,从而构建一个基于人工智能的模型,解决 RARP 后康复的当前挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验