Suppr超能文献

ArkDTA:基于非共价相互作用的注意力正则化可解释药物-靶标结合亲和力预测

ArkDTA: attention regularization guided by non-covalent interactions for explainable drug-target binding affinity prediction.

机构信息

Department of Computer Science and Engineering, Korea University, Seoul 02841, Republic of Korea.

LG CNS, AI Research Center, Seoul 07795, Republic of Korea.

出版信息

Bioinformatics. 2023 Jun 30;39(39 Suppl 1):i448-i457. doi: 10.1093/bioinformatics/btad207.

Abstract

MOTIVATION

Protein-ligand binding affinity prediction is a central task in drug design and development. Cross-modal attention mechanism has recently become a core component of many deep learning models due to its potential to improve model explainability. Non-covalent interactions (NCIs), one of the most critical domain knowledge in binding affinity prediction task, should be incorporated into protein-ligand attention mechanism for more explainable deep drug-target interaction models. We propose ArkDTA, a novel deep neural architecture for explainable binding affinity prediction guided by NCIs.

RESULTS

Experimental results show that ArkDTA achieves predictive performance comparable to current state-of-the-art models while significantly improving model explainability. Qualitative investigation into our novel attention mechanism reveals that ArkDTA can identify potential regions for NCIs between candidate drug compounds and target proteins, as well as guiding internal operations of the model in a more interpretable and domain-aware manner.

AVAILABILITY

ArkDTA is available at https://github.com/dmis-lab/ArkDTA.

CONTACT

kangj@korea.ac.kr.

摘要

动机

蛋白质-配体结合亲和力预测是药物设计和开发的核心任务。由于其提高模型可解释性的潜力,跨模态注意力机制最近已成为许多深度学习模型的核心组成部分。非共价相互作用(NCIs)是结合亲和力预测任务中最重要的领域知识之一,应该将其纳入蛋白质-配体注意力机制中,以构建更具可解释性的深度药物-靶标相互作用模型。我们提出了 ArkDTA,这是一种受 NCIs 指导的可解释结合亲和力预测的新型深度神经网络架构。

结果

实验结果表明,ArkDTA 实现了与当前最先进模型相当的预测性能,同时显著提高了模型的可解释性。对我们新的注意力机制的定性研究表明,ArkDTA 可以识别候选药物化合物和靶蛋白之间潜在的 NCIs 区域,并以更具解释性和领域感知的方式指导模型的内部操作。

可用性

ArkDTA 可在 https://github.com/dmis-lab/ArkDTA 上获得。

联系方式

kangj@korea.ac.kr

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41fd/10311339/e05d2dab9040/btad207f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验