Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital and National Center for Tumor Diseases, Heidelberg, Germany.
Translational Lung Research Center Heidelberg (TLRC-H), member of the German Center for Lung Research (DZL), Heidelberg, Germany.
JCO Precis Oncol. 2024 Mar;8:e2300555. doi: 10.1200/PO.23.00555.
Current guidelines for the management of metastatic non-small cell lung cancer (NSCLC) without driver mutations recommend checkpoint immunotherapy with PD-1/PD-L1 inhibitors, either alone or in combination with chemotherapy. This approach fails to account for individual patient variability and host immune factors and often results in less-than-ideal outcomes. To address the limitations of the current guidelines, we developed and subsequently blindly validated a machine learning algorithm using pretreatment plasma proteomic profiles for personalized treatment decisions.
We conducted a multicenter observational trial (ClinicalTrials.gov identifier: NCT04056247) of patients undergoing PD-1/PD-L1 inhibitor-based therapy (n = 540) and an additional patient cohort receiving chemotherapy (n = 85) who consented to pretreatment plasma and clinical data collection. Plasma proteome profiling was performed using SomaScan Assay v4.1.
Our test demonstrates a strong association between model output and clinical benefit (CB) from PD-1/PD-L1 inhibitor-based treatments, evidenced by high concordance between predicted and observed CB ( = 0.98, < .001). The test categorizes patients as either PROphet-positive or PROphet-negative and further stratifies patient outcomes beyond PD-L1 expression levels. The test successfully differentiates between PROphet-negative patients exhibiting high tumor PD-L1 levels (≥50%) who have enhanced overall survival when treated with a combination of immunotherapy and chemotherapy compared with immunotherapy alone (hazard ratio [HR], 0.23 [95% CI, 0.1 to 0.51], = .0003). By contrast, PROphet-positive patients show comparable outcomes when treated with immunotherapy alone or in combination with chemotherapy (HR, 0.78 [95% CI, 0.42 to 1.44], = .424).
Plasma proteome-based testing of individual patients, in combination with standard PD-L1 testing, distinguishes patient subsets with distinct differences in outcomes from PD-1/PD-L1 inhibitor-based therapies. These data suggest that this approach can improve the precision of first-line treatment for metastatic NSCLC.
目前,对于无驱动基因突变的转移性非小细胞肺癌(NSCLC)的管理指南建议使用 PD-1/PD-L1 抑制剂进行检查点免疫治疗,无论是单独使用还是与化疗联合使用。这种方法没有考虑到个体患者的差异和宿主免疫因素,往往导致不理想的结果。为了解决当前指南的局限性,我们开发了一种基于预处理血浆蛋白质组谱的机器学习算法,并随后对其进行了盲法验证,以便进行个性化的治疗决策。
我们进行了一项多中心观察性试验(ClinicalTrials.gov 标识符:NCT04056247),纳入了接受 PD-1/PD-L1 抑制剂治疗的患者(n=540)和另外一组接受化疗的患者(n=85),这些患者同意采集预处理血浆和临床数据。使用 SomaScan Assay v4.1 进行血浆蛋白质组谱分析。
我们的测试表明,模型输出与 PD-1/PD-L1 抑制剂治疗的临床获益之间存在很强的关联,这一点从预测和观察到的临床获益之间的高度一致性中得到了证明( = 0.98, <.001)。该测试将患者分为 Prophet 阳性或 Prophet 阴性,并进一步将患者的预后分层,超出了 PD-L1 表达水平。该测试成功地区分了 Prophet 阴性患者,这些患者肿瘤 PD-L1 水平较高(≥50%),与单独使用免疫疗法相比,联合免疫疗法和化疗治疗可显著提高总生存期(风险比 [HR],0.23 [95%CI,0.1 至 0.51], =.0003)。相比之下,Prophet 阳性患者单独使用免疫疗法或联合化疗治疗的结局相似(HR,0.78 [95%CI,0.42 至 1.44], =.424)。
对个体患者进行基于血浆蛋白质组的检测,结合标准 PD-L1 检测,可区分接受 PD-1/PD-L1 抑制剂治疗的患者亚组,这些患者的预后存在显著差异。这些数据表明,这种方法可以提高转移性 NSCLC 一线治疗的精准性。