Suppr超能文献

一种用于检测膝骨关节炎的半监督多视图-MRI 网络。

A semi-supervised multiview-MRI network for the detection of Knee Osteoarthritis.

机构信息

University of Orleans, Institut Denis Poisson, UMR CNRS 7013, Orleans, 45067, France.

Lausanne University Hospital, Center of Bone Diseases & University of Lausanne, Lausanne, Switzerland.

出版信息

Comput Med Imaging Graph. 2024 Jun;114:102371. doi: 10.1016/j.compmedimag.2024.102371. Epub 2024 Mar 16.

Abstract

Knee OsteoArthritis (OA) is a prevalent chronic condition, affecting a significant proportion of the global population. Detecting knee OA is crucial as the degeneration of the knee joint is irreversible. In this paper, we introduce a semi-supervised multi-view framework and a 3D CNN model for detecting knee OA using 3D Magnetic Resonance Imaging (MRI) scans. We introduce a semi-supervised learning approach combining labeled and unlabeled data to improve the performance and generalizability of the proposed model. Experimental results show the efficacy of our proposed approach in detecting knee OA from 3D MRI scans using a large cohort of 4297 subjects. An ablation study was conducted to investigate the contributions of various components of the proposed model, providing insights into the optimal design of the model. Our results indicate the potential of the proposed approach to improve the accuracy and efficiency of OA diagnosis. The proposed framework reported an AUC of 93.20% for the detection of knee OA.

摘要

膝关节骨关节炎(OA)是一种常见的慢性疾病,影响着全球很大一部分人群。早期发现膝关节 OA 非常重要,因为膝关节的退变是不可逆转的。在本文中,我们提出了一种基于半监督多视图框架和 3D CNN 模型的方法,用于使用 3D 磁共振成像(MRI)扫描来检测膝关节 OA。我们提出了一种结合有标签和无标签数据的半监督学习方法,以提高所提出模型的性能和泛化能力。实验结果表明,我们的方法在使用包含 4297 名受试者的大型队列的 3D MRI 扫描中检测膝关节 OA 是有效的。通过消融研究来探究模型各个组件的贡献,为模型的最优设计提供了见解。我们的结果表明,该方法有可能提高 OA 诊断的准确性和效率。所提出的框架报告了用于检测膝关节 OA 的 AUC 为 93.20%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验