Suppr超能文献

基于图形表示和表面卷积的膝关节软骨缺损评估

Knee Cartilage Defect Assessment by Graph Representation and Surface Convolution.

作者信息

Zhuang Zixu, Si Liping, Wang Sheng, Xuan Kai, Ouyang Xi, Zhan Yiqiang, Xue Zhong, Zhang Lichi, Shen Dinggang, Yao Weiwu, Wang Qian

出版信息

IEEE Trans Med Imaging. 2023 Feb;42(2):368-379. doi: 10.1109/TMI.2022.3206042. Epub 2023 Feb 2.

Abstract

Knee osteoarthritis (OA) is the most common osteoarthritis and a leading cause of disability. Cartilage defects are regarded as major manifestations of knee OA, which are visible by magnetic resonance imaging (MRI). Thus early detection and assessment for knee cartilage defects are important for protecting patients from knee OA. In this way, many attempts have been made on knee cartilage defect assessment by applying convolutional neural networks (CNNs) to knee MRI. However, the physiologic characteristics of the cartilage may hinder such efforts: the cartilage is a thin curved layer, implying that only a small portion of voxels in knee MRI can contribute to the cartilage defect assessment; heterogeneous scanning protocols further challenge the feasibility of the CNNs in clinical practice; the CNN-based knee cartilage evaluation results lack interpretability. To address these challenges, we model the cartilages structure and appearance from knee MRI into a graph representation, which is capable of handling highly diverse clinical data. Then, guided by the cartilage graph representation, we design a non-Euclidean deep learning network with the self-attention mechanism, to extract cartilage features in the local and global, and to derive the final assessment with a visualized result. Our comprehensive experiments show that the proposed method yields superior performance in knee cartilage defect assessment, plus its convenient 3D visualization for interpretability.

摘要

膝关节骨关节炎(OA)是最常见的骨关节炎,也是导致残疾的主要原因。软骨缺损被视为膝关节OA的主要表现,可通过磁共振成像(MRI)观察到。因此,早期检测和评估膝关节软骨缺损对于预防患者患膝关节OA非常重要。为此,人们尝试了许多方法,通过将卷积神经网络(CNN)应用于膝关节MRI来评估膝关节软骨缺损。然而,软骨的生理特征可能会阻碍这些努力:软骨是一层薄的弯曲层,这意味着膝关节MRI中只有一小部分体素可用于软骨缺损评估;扫描协议的异质性进一步挑战了CNN在临床实践中的可行性;基于CNN的膝关节软骨评估结果缺乏可解释性。为应对这些挑战,我们将膝关节MRI中的软骨结构和外观建模为一种图形表示,它能够处理高度多样化的临床数据。然后,在软骨图形表示的指导下,我们设计了一种具有自注意力机制的非欧几里得深度学习网络,以提取局部和全局的软骨特征,并通过可视化结果得出最终评估。我们的综合实验表明,所提出的方法在膝关节软骨缺损评估中具有卓越的性能,并且其方便的3D可视化具有可解释性。

相似文献

1

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验