Suppr超能文献

一套使用机器学习和基于蛋白质片段的协议设计的蛋白质笼。

A suite of designed protein cages using machine learning and protein fragment-based protocols.

机构信息

Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.

UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, USA.

出版信息

Structure. 2024 Jun 6;32(6):751-765.e11. doi: 10.1016/j.str.2024.02.017. Epub 2024 Mar 20.

Abstract

Designed protein cages and related materials provide unique opportunities for applications in biotechnology and medicine, but their creation remains challenging. Here, we apply computational approaches to design a suite of tetrahedrally symmetric, self-assembling protein cages. For the generation of docked conformations, we emphasize a protein fragment-based approach, while for sequence design of the de novo interface, a comparison of knowledge-based and machine learning protocols highlights the power and increased experimental success achieved using ProteinMPNN. An analysis of design outcomes provides insights for improving interface design protocols, including prioritizing fragment-based motifs, balancing interface hydrophobicity and polarity, and identifying preferred polar contact patterns. In all, we report five structures for seven protein cages, along with two structures of intermediate assemblies, with the highest resolution reaching 2.0 Å using cryo-EM. This set of designed cages adds substantially to the body of available protein nanoparticles, and to methodologies for their creation.

摘要

设计的蛋白质笼和相关材料为生物技术和医学中的应用提供了独特的机会,但它们的创造仍然具有挑战性。在这里,我们应用计算方法来设计一系列具有四面体对称性的自组装蛋白质笼。为了生成对接构象,我们强调基于蛋白质片段的方法,而对于从头开始的界面序列设计,基于知识和机器学习协议的比较突出了使用 ProteinMPNN 可实现的强大功能和增加的实验成功率。对设计结果的分析为改进接口设计协议提供了思路,包括优先考虑基于片段的基序、平衡界面疏水性和极性以及识别首选的极性接触模式。总之,我们报告了七个蛋白质笼的五个结构,以及两个中间组装体的结构,使用 cryo-EM 的最高分辨率达到 2.0 Å。这组设计的笼子大大增加了可用蛋白质纳米颗粒的数量,以及它们的创建方法。

相似文献

引用本文的文献

5
Hierarchical design of pseudosymmetric protein nanocages.伪对称蛋白质纳米笼的层次设计
Nature. 2025 Feb;638(8050):553-561. doi: 10.1038/s41586-024-08360-6. Epub 2024 Dec 18.

本文引用的文献

1
Rapid and automated design of two-component protein nanomaterials using ProteinMPNN.使用 ProteinMPNN 快速自动化设计双组份蛋白质纳米材料。
Proc Natl Acad Sci U S A. 2024 Mar 26;121(13):e2314646121. doi: 10.1073/pnas.2314646121. Epub 2024 Mar 19.
2
Illuminating protein space with a programmable generative model.用可编程生成模型照亮蛋白质空间。
Nature. 2023 Nov;623(7989):1070-1078. doi: 10.1038/s41586-023-06728-8. Epub 2023 Nov 15.
5
De novo design of protein structure and function with RFdiffusion.利用 RFdiffusion 从头设计蛋白质结构和功能。
Nature. 2023 Aug;620(7976):1089-1100. doi: 10.1038/s41586-023-06415-8. Epub 2023 Jul 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验