Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720.
Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720.
J Neurosci. 2024 May 1;44(18):e1461232024. doi: 10.1523/JNEUROSCI.1461-23.2024.
An organizational feature of neural circuits is the specificity of synaptic connections. A striking example is the direction-selective (DS) circuit of the retina. There are multiple subtypes of DS retinal ganglion cells (DSGCs) that prefer motion along one of four preferred directions. This computation is mediated by selective wiring of a single inhibitory interneuron, the starburst amacrine cell (SAC), with each DSGC subtype preferentially receiving input from a subset of SAC processes. We hypothesize that the molecular basis of this wiring is mediated in part by unique expression profiles of DSGC subtypes. To test this, we first performed paired recordings from isolated mouse retinas of both sexes to determine that postnatal day 10 (P10) represents the age at which asymmetric synapses form. Second, we performed RNA sequencing and differential expression analysis on isolated P10 ON-OFF DSGCs tuned for either nasal or ventral motion and identified candidates which may promote direction-specific wiring. We then used a conditional knock-out strategy to test the role of one candidate, the secreted synaptic organizer cerebellin-4 (Cbln4), in the development of DS tuning. Using two-photon calcium imaging, we observed a small deficit in directional tuning among ventral-preferring DSGCs lacking Cbln4, though whole-cell voltage-clamp recordings did not identify a significant change in inhibitory inputs. This suggests that Cbln4 does not function primarily via a cell-autonomous mechanism to instruct wiring of DS circuits. Nevertheless, our transcriptomic analysis identified unique candidate factors for gaining insights into the molecular mechanisms that instruct wiring specificity in the DS circuit.
神经回路的一个组织特征是突触连接的特异性。一个显著的例子是视网膜的方向选择性(DS)回路。有多种亚型的 DS 视网膜神经节细胞(DSGCs),它们优先沿四个首选方向之一运动。这种计算是通过单个抑制性中间神经元,星爆型无长突细胞(SAC)的选择性连接介导的,每个 DSGC 亚型优先从 SAC 过程的一个子集接收输入。我们假设这种连接的分子基础部分是由 DSGC 亚型的独特表达谱介导的。为了验证这一点,我们首先对 P10 雄性和雌性分离的小鼠视网膜进行了配对记录,以确定 P10 代表形成不对称突触的年龄。其次,我们对 P10 开-关 DSGCs 进行了 RNA 测序和差异表达分析,这些细胞对鼻侧或腹侧运动有选择性,并确定了可能促进方向特异性连接的候选基因。然后,我们使用条件敲除策略来测试候选基因之一,即分泌性突触组织者小脑肽-4(Cbln4),在 DS 调谐发育中的作用。使用双光子钙成像,我们观察到缺乏 Cbln4 的腹侧优先 DSGC 中方向调谐存在小缺陷,尽管全细胞电压钳记录并未发现抑制性输入有显著变化。这表明 Cbln4 不是通过细胞自主机制主要发挥作用来指导 DS 回路的连接。然而,我们的转录组分析确定了独特的候选因素,有助于深入了解指导 DS 回路连接特异性的分子机制。