Chorowski Michał, Kutner Ryszard, Struzik Zbigniew R
Faculty of Physics, University of Warsaw, Pasteur Str. 5, 02093, Warsaw, Poland.
Graduate School of Education, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
Sci Rep. 2024 Mar 21;14(1):6833. doi: 10.1038/s41598-024-53014-2.
Prompted by the ubiquity of empirical observations of critical phenomena, often in non-equilibrium macrostates, we developed a modelling approach in which several critical phenomena coexist. Instead of a single critical point, many coexisting critical points in the system are identified, forming a one-dimensional critical manifold. Identified within our game-of-life-like heterogeneous agent-based simulation model, where agents can be created and annihilated in the presence of a catalyst, each critical point belonging to the critical manifold is associated with a multi-spectrum of critical exponents. We find this situation in non-equilibrium mixed percolation-like macrostates obeying continuous phase transitions. These macrostates are quasi-stationary, where some system characteristics are time-independent while others are not. This novel look at universality signals the existance of complexity of critical phenomena richer than described to date.
受临界现象(通常出现在非平衡宏观态中)普遍存在的经验观察的启发,我们开发了一种建模方法,其中几种临界现象共存。系统中不是单个临界点,而是识别出许多共存的临界点,形成一维临界流形。在我们类似生命游戏的基于异质主体的模拟模型中识别出这一点,在该模型中,主体在催化剂存在的情况下可以产生和湮灭,属于临界流形的每个临界点都与一个多谱临界指数相关联。我们在服从连续相变的非平衡混合渗流状宏观态中发现了这种情况。这些宏观态是准静态的,其中一些系统特征与时间无关,而另一些则不是。这种对普遍性的新颖看法表明,临界现象的复杂性比迄今为止所描述的更为丰富。