Suppr超能文献

短期暴露于空气污染与 COVID-19 后在加泰罗尼亚的住院:COVAIR-CAT 研究。

Short-term exposure to air pollution and hospital admission after COVID-19 in Catalonia: the COVAIR-CAT study.

机构信息

Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain.

Universitat Pompeu Fabra (UPF), Barcelona, Spain.

出版信息

Int J Epidemiol. 2024 Feb 14;53(2). doi: 10.1093/ije/dyae041.

Abstract

BACKGROUND

A growing body of evidence has reported positive associations between long-term exposure to air pollution and poor COVID-19 outcomes. Inconsistent findings have been reported for short-term air pollution, mostly from ecological study designs. Using individual-level data, we studied the association between short-term variation in air pollutants [nitrogen dioxide (NO2), particulate matter with a diameter of <2.5 µm (PM2.5) and a diameter of <10 µm (PM10) and ozone (O3)] and hospital admission among individuals diagnosed with COVID-19.

METHODS

The COVAIR-CAT (Air pollution in relation to COVID-19 morbidity and mortality: a large population-based cohort study in Catalonia, Spain) cohort is a large population-based cohort in Catalonia, Spain including 240 902 individuals diagnosed with COVID-19 in the primary care system from 1 March until 31 December 2020. Our outcome was hospitalization within 30 days of COVID-19 diagnosis. We used individual residential address to assign daily air-pollution exposure, estimated using machine-learning methods for spatiotemporal prediction. For each pandemic wave, we fitted Cox proportional-hazards models accounting for non-linear-distributed lagged exposure over the previous 7 days.

RESULTS

Results differed considerably by pandemic wave. During the second wave, an interquartile-range increase in cumulative weekly exposure to air pollution (lag0_7) was associated with a 12% increase (95% CI: 4% to 20%) in COVID-19 hospitalizations for NO2, 8% (95% CI: 1% to 16%) for PM2.5 and 9% (95% CI: 3% to 15%) for PM10. We observed consistent positive associations for same-day (lag0) exposure, whereas lag-specific associations beyond lag0 were generally not statistically significant.

CONCLUSIONS

Our study suggests positive associations between NO2, PM2.5 and PM10 and hospitalization risk among individuals diagnosed with COVID-19 during the second wave. Cumulative hazard ratios were largely driven by exposure on the same day as hospitalization.

摘要

背景

越来越多的证据表明,长期暴露于空气污染与 COVID-19 不良结局之间存在正相关关系。短期空气污染的研究结果并不一致,主要来自生态研究设计。本研究使用个体水平的数据,研究了 COVID-19 患者中短期空气污染物(二氧化氮 (NO2)、直径小于 2.5μm 的颗粒物 (PM2.5) 和直径小于 10μm 的颗粒物 (PM10) 和臭氧 (O3)) 短期变化与住院之间的关系。

方法

COVAIR-CAT(空气污染与 COVID-19 发病率和死亡率的关系:西班牙加泰罗尼亚的一项大型基于人群的队列研究)队列是西班牙加泰罗尼亚的一项大型基于人群的队列研究,包括 2020 年 3 月 1 日至 12 月 31 日在初级保健系统中诊断出的 240902 例 COVID-19 患者。我们的结局是 COVID-19 诊断后 30 天内住院。我们使用个体居住地址来分配每日空气污染暴露,使用时空预测的机器学习方法进行估计。对于每个大流行波,我们拟合了 Cox 比例风险模型,该模型考虑了前 7 天非线性分布的滞后暴露。

结果

结果因大流行波而异。在第二波期间,累积每周空气污染暴露(lag0_7)的四分位间距增加与 COVID-19 住院的 NO2 增加 12%(95%CI:4%至 20%)、PM2.5 增加 8%(95%CI:1%至 16%)和 PM10 增加 9%(95%CI:3%至 15%)相关。我们观察到当天(lag0)暴露的一致正相关,而 lag0 以外的滞后特异性关联通常无统计学意义。

结论

我们的研究表明,在第二波期间,NO2、PM2.5 和 PM10 与 COVID-19 患者的住院风险之间存在正相关关系。累积危险比主要受住院当天暴露的驱动。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验