Suppr超能文献

推导长寿气体的全球羟基丰度和大气寿命:寻找三氯甲烷的替代品。

Deriving Global OH Abundance and Atmospheric Lifetimes for Long-Lived Gases: A Search for CHCCl Alternatives.

作者信息

Liang Qing, Chipperfield Martyn P, Fleming Eric L, Abraham N Luke, Braesicke Peter, Burkholder James B, Daniel John S, Dhomse Sandip, Fraser Paul J, Hardiman Steven C, Jackman Charles H, Kinnison Douglas E, Krummel Paul B, Montzka Stephen A, Morgenstern Olaf, McCulloch Archie, Mühle Jens, Newman Paul A, Orkin Vladimir L, Pitari Giovanni, Prinn Ronald G, Rigby Matthew, Rozanov Eugene, Stenke Andrea, Tummon Fiona, Velders Guus J M, Visioni Daniele, Weiss Ray F

机构信息

Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.

Universities Space Research Association, GESTAR, Columbia, Maryland, USA.

出版信息

J Geophys Res Atmos. 2017 Nov 16;122(21):11914-11933. doi: 10.1002/2017jd026926. Epub 2017 Oct 10.

Abstract

An accurate estimate of global hydroxyl radical (OH) abundance is important for projections of air quality, climate, and stratospheric ozone recovery. As the atmospheric mixing ratios of methyl chloroform (CHCCl) (MCF), the commonly used OH reference gas, approaches zero, it is important to find alternative approaches to infer atmospheric OH abundance and variability. The lack of global bottom-up emission inventories is the primary obstacle in choosing a MCF alternative. We illustrate that global emissions of long-lived trace gases can be inferred from their observed mixing ratio differences between the Northern Hemisphere (NH) and Southern Hemisphere (SH), given realistic estimates of their NH-SH exchange time, the emission partitioning between the two hemispheres, and the NH versus SH OH abundance ratio. Using the observed long-term trend and emissions derived from the measured hemispheric gradient, the combination of HFC-32 (CHF), HFC-134a (CHFCF, HFC-152a (CHCHF), and HCFC-22 (CHClF), instead of a single gas, will be useful as a MCF alternative to infer global and hemispheric OH abundance and trace gas lifetimes. The primary assumption on which this multispecies approach relies is that the OH lifetimes can be estimated by scaling the thermal reaction rates of a reference gas at 272 K on global and hemispheric scales. Thus, the derived hemispheric and global OH estimates are forced to reconcile the observed trends and gradient for all four compounds simultaneously. However, currently, observations of these gases from the surface networks do not provide more accurate OH abundance estimate than that from MCF.

摘要

准确估算全球羟基自由基(OH)丰度对于空气质量、气候及平流层臭氧恢复的预测至关重要。由于常用的OH参考气体甲基氯仿(CHCCl,即MCF)的大气混合比趋近于零,寻找推断大气OH丰度及其变率的替代方法变得很重要。缺乏全球自下而上的排放清单是选择MCF替代物的主要障碍。我们表明,在对其南北半球(NH-SH)交换时间、两半球间的排放分配以及NH与SH的OH丰度比进行实际估算的情况下,可根据长寿命痕量气体在北半球(NH)和南半球(SH)观测到的混合比差异推断其全球排放量。利用观测到的长期趋势以及由实测半球梯度得出的排放量,将HFC-32(CHF₂)、HFC-134a(CH₂FCF₃)、HFC-152a(CH₃CHF₂)和HCFC-22(CHClF₂)组合起来,而非单一气体,将作为MCF的替代物用于推断全球及半球的OH丰度和痕量气体寿命。这种多物种方法所依赖的主要假设是,OH寿命可通过在全球和半球尺度上按参考气体在272K时的热反应速率进行缩放来估算。因此,得出的半球和全球OH估算值被迫同时与所有四种化合物的观测趋势和梯度相协调。然而,目前来自地面网络对这些气体的观测并未提供比MCF更准确的OH丰度估算。

相似文献

1
Deriving Global OH Abundance and Atmospheric Lifetimes for Long-Lived Gases: A Search for CHCCl Alternatives.
J Geophys Res Atmos. 2017 Nov 16;122(21):11914-11933. doi: 10.1002/2017jd026926. Epub 2017 Oct 10.
2
Global emissions of refrigerants HCFC-22 and HFC-134a: unforeseen seasonal contributions.
Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):17379-84. doi: 10.1073/pnas.1417372111. Epub 2014 Nov 24.
3
Observational evidence for interhemispheric hydroxyl-radical parity.
Nature. 2014 Sep 11;513(7517):219-23. doi: 10.1038/nature13721.
4
Estimate Gaps of Montreal Protocol-Regulated Potent Greenhouse Gas HFC-152a Emissions in China Have Been Explained.
Environ Sci Technol. 2024 Apr 2;58(13):5750-5759. doi: 10.1021/acs.est.3c09516. Epub 2024 Mar 20.
5
The atmospheric concentrations and emissions of major halocarbons in China during 2009-2019.
Environ Pollut. 2021 Sep 1;284:117190. doi: 10.1016/j.envpol.2021.117190. Epub 2021 May 14.
6
Low European methyl chloroform emissions inferred from long-term atmospheric measurements.
Nature. 2005 Feb 3;433(7025):506-8. doi: 10.1038/nature03220.
8
Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades.
Science. 2001 Jun 8;292(5523):1882-8. doi: 10.1126/science.1058673. Epub 2001 May 3.
9
New observational constraints for atmospheric hydroxyl on global and hemispheric scales.
Science. 2000 Apr 21;288(5465):500-3. doi: 10.1126/science.288.5465.500.
10
Continuing emissions of methyl chloroform from Europe.
Nature. 2003 Jan 9;421(6919):131-5. doi: 10.1038/nature01311.

引用本文的文献

1
Converging evidence for reduced global atmospheric oxidation in 2020.
Natl Sci Rev. 2025 Jun 2;12(8):nwaf232. doi: 10.1093/nsr/nwaf232. eCollection 2025 Aug.
2
Radiocarbon monoxide indicates increasing atmospheric oxidizing capacity.
Nat Commun. 2025 Jan 2;16(1):249. doi: 10.1038/s41467-024-55603-1.
3
An observation-based, reduced-form model for oxidation in the remote marine troposphere.
Proc Natl Acad Sci U S A. 2023 Aug 22;120(34):e2209735120. doi: 10.1073/pnas.2209735120. Epub 2023 Aug 14.
4
Mapping hydroxyl variability throughout the global remote troposphere via synthesis of airborne and satellite formaldehyde observations.
Proc Natl Acad Sci U S A. 2019 Jun 4;116(23):11171-11180. doi: 10.1073/pnas.1821661116. Epub 2019 May 20.
5
Interpreting contemporary trends in atmospheric methane.
Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):2805-2813. doi: 10.1073/pnas.1814297116. Epub 2019 Feb 7.

本文引用的文献

1
Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl.
Proc Natl Acad Sci U S A. 2017 May 23;114(21):5367-5372. doi: 10.1073/pnas.1616020114. Epub 2017 Apr 17.
2
Role of atmospheric oxidation in recent methane growth.
Proc Natl Acad Sci U S A. 2017 May 23;114(21):5373-5377. doi: 10.1073/pnas.1616426114. Epub 2017 Apr 17.
3
Reconciling reported and unreported HFC emissions with atmospheric observations.
Proc Natl Acad Sci U S A. 2015 May 12;112(19):5927-31. doi: 10.1073/pnas.1420247112. Epub 2015 Apr 27.
5
Observational evidence for interhemispheric hydroxyl-radical parity.
Nature. 2014 Sep 11;513(7517):219-23. doi: 10.1038/nature13721.
6
Atmospheric chemistry: No equatorial divide for a cleansing radical.
Nature. 2014 Sep 11;513(7517):176-8. doi: 10.1038/513176a.
7
Tropospheric OH and HO2 radicals: field measurements and model comparisons.
Chem Soc Rev. 2012 Oct 7;41(19):6348-404. doi: 10.1039/c2cs35140d. Epub 2012 Aug 21.
8
Small interannual variability of global atmospheric hydroxyl.
Science. 2011 Jan 7;331(6013):67-9. doi: 10.1126/science.1197640.
9
Atmospheric trends in methylchloroform and the global average for the hydroxyl radical.
Science. 1987 Nov 13;238(4829):945-50. doi: 10.1126/science.238.4829.945.
10
Atmospheric Trends and Lifetime of CH3CCI3 and Global OH Concentrations.
Science. 1995 Jul 14;269(5221):187-92. doi: 10.1126/science.269.5221.187.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验