Turner Alexander J, Frankenberg Christian, Wennberg Paul O, Jacob Daniel J
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138;
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125;
Proc Natl Acad Sci U S A. 2017 May 23;114(21):5367-5372. doi: 10.1073/pnas.1616020114. Epub 2017 Apr 17.
Methane is the second strongest anthropogenic greenhouse gas and its atmospheric burden has more than doubled since 1850. Methane concentrations stabilized in the early 2000s and began increasing again in 2007. Neither the stabilization nor the recent growth are well understood, as evidenced by multiple competing hypotheses in recent literature. Here we use a multispecies two-box model inversion to jointly constrain 36 y of methane sources and sinks, using ground-based measurements of methane, methyl chloroform, and the C/C ratio in atmospheric methane (δCH) from 1983 through 2015. We find that the problem, as currently formulated, is underdetermined and solutions obtained in previous work are strongly dependent on prior assumptions. Based on our analysis, the mathematically most likely explanation for the renewed growth in atmospheric methane, counterintuitively, involves a 25-Tg/y decrease in methane emissions from 2003 to 2016 that is offset by a 7% decrease in global mean hydroxyl (OH) concentrations, the primary sink for atmospheric methane, over the same period. However, we are still able to fit the observations if we assume that OH concentrations are time invariant (as much of the previous work has assumed) and we then find solutions that are largely consistent with other proposed hypotheses for the renewed growth of atmospheric methane since 2007. We conclude that the current surface observing system does not allow unambiguous attribution of the decadal trends in methane without robust constraints on OH variability, which currently rely purely on methyl chloroform data and its uncertain emissions estimates.
甲烷是第二大人为温室气体,自1850年以来其在大气中的含量已增加了一倍多。甲烷浓度在21世纪初趋于稳定,并于2007年再次开始上升。目前,无论是浓度稳定期还是近期的增长期,都尚未得到很好的理解,近期文献中存在多种相互竞争的假设就证明了这一点。在此,我们使用多物种双箱模型反演,通过1983年至2015年期间对甲烷、甲基氯仿以及大气甲烷中碳-碳比(δ¹³CH₄)的地面测量,联合约束36年的甲烷源和汇。我们发现,按照目前的公式化表述,该问题的约束不足,先前研究中得到的解决方案强烈依赖于先验假设。基于我们的分析,从数学角度来看,对大气甲烷再次增长最有可能的解释是,与直觉相反,2003年至2016年期间甲烷排放量每年减少25太克,这被同期全球平均羟基(OH)浓度下降7%所抵消,而OH是大气甲烷的主要汇。然而,如果我们假设OH浓度随时间不变(正如之前许多研究假设的那样),我们仍然能够拟合观测数据,然后找到与自2007年以来大气甲烷再次增长的其他假设在很大程度上一致的解决方案。我们得出结论,在没有对OH变率进行有力约束的情况下,当前的地面观测系统无法明确归因于甲烷的年代际趋势,目前对OH变率的约束完全依赖于甲基氯仿数据及其不确定的排放估计。