Turner Alexander J, Frankenberg Christian, Kort Eric A
Department of Earth and Planetary Sciences, University of California, Berkeley, CA 94720;
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91226;
Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):2805-2813. doi: 10.1073/pnas.1814297116. Epub 2019 Feb 7.
Atmospheric methane plays a major role in controlling climate, yet contemporary methane trends (1982-2017) have defied explanation with numerous, often conflicting, hypotheses proposed in the literature. Specifically, atmospheric observations of methane from 1982 to 2017 have exhibited periods of both increasing concentrations (from 1982 to 2000 and from 2007 to 2017) and stabilization (from 2000 to 2007). Explanations for the increases and stabilization have invoked changes in tropical wetlands, livestock, fossil fuels, biomass burning, and the methane sink. Contradictions in these hypotheses arise because our current observational network cannot unambiguously link recent methane variations to specific sources. This raises some fundamental questions: () What do we know about sources, sinks, and underlying processes driving observed trends in atmospheric methane? () How will global methane respond to changes in anthropogenic emissions? And (), What future observations could help resolve changes in the methane budget? To address these questions, we discuss potential drivers of atmospheric methane abundances over the last four decades in light of various observational constraints as well as process-based knowledge. While uncertainties in the methane budget exist, they should not detract from the potential of methane emissions mitigation strategies. We show that net-zero cost emission reductions can lead to a declining atmospheric burden, but can take three decades to stabilize. Moving forward, we make recommendations for observations to better constrain contemporary trends in atmospheric methane and to provide mitigation support.
大气甲烷在控制气候方面起着重要作用,然而当代甲烷趋势(1982 - 2017年)却难以解释,文献中提出了众多且常常相互矛盾的假设。具体而言,1982年至2017年期间对大气甲烷的观测显示,甲烷浓度既有上升期(1982年至2000年以及2007年至2017年),也有稳定期(2000年至2007年)。对甲烷浓度上升和稳定的解释涉及热带湿地、牲畜、化石燃料、生物质燃烧以及甲烷汇的变化。这些假设之间存在矛盾,因为我们当前的观测网络无法明确地将近期甲烷变化与特定来源联系起来。这引发了一些基本问题:(1)我们对驱动大气甲烷观测趋势的源、汇及潜在过程了解多少?(2)全球甲烷将如何应对人为排放的变化?以及(3)未来哪些观测有助于解决甲烷收支的变化?为解决这些问题,我们根据各种观测限制以及基于过程的知识,讨论了过去四十年来大气甲烷丰度的潜在驱动因素。尽管甲烷收支存在不确定性,但它们不应减损甲烷排放缓解策略的潜力。我们表明,净零成本的减排可导致大气负担下降,但可能需要三十年才能稳定下来。展望未来,我们对观测提出建议,以更好地限制大气甲烷的当代趋势并提供缓解支持。