Suppr超能文献

SMMF:一种基于自注意力机制的多参数磁共振成像特征融合框架,用于膀胱癌分级诊断。

SMMF: a self-attention-based multi-parametric MRI feature fusion framework for the diagnosis of bladder cancer grading.

作者信息

Tao Tingting, Chen Ying, Shang Yunyun, He Jianfeng, Hao Jingang

机构信息

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China.

Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, China.

出版信息

Front Oncol. 2024 Mar 7;14:1337186. doi: 10.3389/fonc.2024.1337186. eCollection 2024.

Abstract

BACKGROUND

Multi-parametric magnetic resonance imaging (MP-MRI) may provide comprehensive information for graded diagnosis of bladder cancer (BCa). Nevertheless, existing methods ignore the complex correlation between these MRI sequences, failing to provide adequate information. Therefore, the main objective of this study is to enhance feature fusion and extract comprehensive features from MP-MRI using deep learning methods to achieve an accurate diagnosis of BCa grading.

METHODS

In this study, a self-attention-based MP-MRI feature fusion framework (SMMF) is proposed to enhance the performance of the model by extracting and fusing features of both T2-weighted imaging (T2WI) and dynamic contrast-enhanced imaging (DCE) sequences. A new multiscale attention (MA) model is designed to embed into the neural network (CNN) end to further extract rich features from T2WI and DCE. Finally, a self-attention feature fusion strategy (SAFF) was used to effectively capture and fuse the common and complementary features of patients' MP-MRIs.

RESULTS

In a clinically collected sample of 138 BCa patients, the SMMF network demonstrated superior performance compared to the existing deep learning-based bladder cancer grading model, with accuracy, F1 value, and AUC values of 0.9488, 0.9426, and 0.9459, respectively.

CONCLUSION

Our proposed SMMF framework combined with MP-MRI information can accurately predict the pathological grading of BCa and can better assist physicians in diagnosing BCa.

摘要

背景

多参数磁共振成像(MP-MRI)可为膀胱癌(BCa)的分级诊断提供全面信息。然而,现有方法忽略了这些MRI序列之间的复杂相关性,未能提供足够的信息。因此,本研究的主要目的是利用深度学习方法增强特征融合并从MP-MRI中提取综合特征,以实现对BCa分级的准确诊断。

方法

在本研究中,提出了一种基于自注意力的MP-MRI特征融合框架(SMMF),通过提取和融合T2加权成像(T2WI)和动态对比增强成像(DCE)序列的特征来提高模型性能。设计了一种新的多尺度注意力(MA)模型嵌入到神经网络(CNN)末端,以进一步从T2WI和DCE中提取丰富特征。最后,采用自注意力特征融合策略(SAFF)有效地捕获和融合患者MP-MRI的共同特征和互补特征。

结果

在138例BCa患者的临床收集样本中,SMMF网络与现有的基于深度学习的膀胱癌分级模型相比表现出卓越的性能,准确率、F1值和AUC值分别为0.9488、0.9426和0.9459。

结论

我们提出的SMMF框架结合MP-MRI信息可以准确预测BCa的病理分级,并能更好地协助医生诊断BCa。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c729/10955083/a7ae6862ed5a/fonc-14-1337186-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验