State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
Eur Radiol. 2022 Nov;32(11):7988-7997. doi: 10.1007/s00330-022-08783-7. Epub 2022 May 18.
To explore the feasibility and effectiveness of machine learning (ML) based on multiparametric magnetic resonance imaging (mp-MRI) features extracted from transfer learning combined with clinical parameters to differentiate uterine sarcomas from atypical leiomyomas (ALMs).
The data of 86 uterine sarcomas between July 2011 and December 2019 and 86 ALMs between June 2013 and June 2017 were retrospectively reviewed. We extracted deep-learning features and radiomics features from T2-weighted imaging (T2WI) and diffusion weighted imaging (DWI). The two feature extraction methods, transfer learning and radiomics, were compared. Random forest was adopted as the classifier. T2WI features, DWI features, combined T2WI and DWI (mp-MRI) features, and combined clinical parameters and mp-MRI features were applied to establish T2, DWI, T2-DWI, and complex multiparameter (mp) models, respectively. Predictive performance was assessed with the area under the receiver operating characteristic curve (AUC).
In the test set, the T2, DWI, T2-DWI and complex mp models based on transfer learning (AUCs range from 0.76 to 0.81, 0.80 to 0.88, 0.85 to 0.92, and 0.94 to 0.96, respectively) outperformed the models based on radiomics (AUCs of 0.73, 0.76, 0.79, and 0.92, respectively). Moreover, the complex mp model showed the best prediction performance, with the Resnet50-complex mp model achieving the highest AUC (0.96) and accuracy (0.87).
Transfer learning is feasible and superior to radiomics in the differential diagnosis of uterine sarcomas and ALMs in our dataset. ML models based on deep learning features of nonenhanced mp-MRI and clinical parameters can achieve good diagnostic efficacy.
• The ML model combining nonenhanced mp-MRI features and clinical parameters can distinguish uterine sarcomas from ALMs. • Transfer learning can be applied to differentiate uterine sarcomas from ALMs and outperform radiomics. • The most accurate prediction model was Resnet50-based transfer learning, built with the deep-learning features of mp-MRI and clinical parameters.
探讨基于迁移学习的多参数磁共振成像(mp-MRI)特征提取并结合临床参数的机器学习(ML)方法,用于鉴别子宫肉瘤和非典型平滑肌瘤(ALM)的可行性和有效性。
回顾性分析 2011 年 7 月至 2019 年 12 月间 86 例子宫肉瘤和 2013 年 6 月至 2017 年 6 月间 86 例 ALM 的数据。我们从 T2 加权成像(T2WI)和弥散加权成像(DWI)中提取深度学习特征和放射组学特征。比较了两种特征提取方法(迁移学习和放射组学)。采用随机森林作为分类器。分别建立 T2WI、DWI、T2WI-DWI 和综合多参数(mp)模型,使用 T2WI 特征、DWI 特征、联合 T2WI 和 DWI(mp-MRI)特征以及联合临床参数和 mp-MRI 特征。采用受试者工作特征曲线下面积(AUC)评估预测性能。
在测试集中,基于迁移学习的 T2、DWI、T2-DWI 和复杂 mp 模型(AUC 范围为 0.76 至 0.81、0.80 至 0.88、0.85 至 0.92 和 0.94 至 0.96)优于基于放射组学的模型(AUC 分别为 0.73、0.76、0.79 和 0.92)。此外,复杂 mp 模型显示出最佳预测性能,其中 Resnet50-complex mp 模型的 AUC(0.96)和准确率(0.87)最高。
在本数据集的子宫肉瘤和 ALM 鉴别诊断中,基于迁移学习的方法是可行的,优于放射组学。基于非增强 mp-MRI 深度学习特征和临床参数的 ML 模型可获得良好的诊断效果。
• 基于非增强 mp-MRI 特征和临床参数的 ML 模型可区分子宫肉瘤和 ALM。• 迁移学习可用于鉴别子宫肉瘤和 ALM,优于放射组学。• 最准确的预测模型是基于 Resnet50 的迁移学习模型,它基于 mp-MRI 的深度学习特征和临床参数构建。