IEEE Trans Med Imaging. 2022 Dec;41(12):3884-3894. doi: 10.1109/TMI.2022.3199032. Epub 2022 Dec 2.
Multi-modal imaging data fusion has attracted much attention in medical data analysis because it can provide complementary information for more accurate analysis. Integrating functional and structural multi-modal imaging data has been increasingly used in the diagnosis of brain diseases, such as epilepsy. Most of the existing methods focus on the feature space fusion of different modalities but ignore the valuable high-order relationships among samples and the discriminative fused features for classification. In this paper, we propose a novel framework by fusing data from two modalities of functional MRI (fMRI) and diffusion tensor imaging (DTI) for epilepsy diagnosis, which effectively captures the complementary information and discriminative features from different modalities by high-order feature extraction with the attention mechanism. Specifically, we propose a triple network to explore the discriminative information from the high-order representation feature space learned from multi-modal data. Meanwhile, self-attention is introduced to adaptively estimate the degree of importance between brain regions, and the cross-attention mechanism is utilized to extract complementary information from fMRI and DTI. Finally, we use the triple loss function to adjust the distance between samples in the common representation space. We evaluate the proposed method on the epilepsy dataset collected from Jinling Hospital, and the experiment results demonstrate that our method is significantly superior to several state-of-the-art diagnosis approaches.
多模态医学影像数据融合在医学数据分析中受到了广泛关注,因为它可以为更准确的分析提供互补信息。整合功能和结构的多模态医学影像数据已经越来越多地用于脑疾病的诊断,如癫痫。现有的大多数方法都侧重于不同模态的特征空间融合,但忽略了样本之间有价值的高阶关系和用于分类的判别融合特征。在本文中,我们提出了一个新的框架,通过融合功能磁共振成像 (fMRI) 和弥散张量成像 (DTI) 的两种模态的数据,用于癫痫诊断,该框架通过使用注意力机制的高阶特征提取有效地捕获了来自不同模态的互补信息和判别特征。具体来说,我们提出了一个三网络模型,从多模态数据学习到的高阶表示特征空间中探索判别信息。同时,引入自注意力机制自适应地估计脑区之间的重要程度,利用交叉注意力机制从 fMRI 和 DTI 中提取互补信息。最后,我们使用三重损失函数来调整公共表示空间中样本之间的距离。我们在金林医院采集的癫痫数据集上评估了所提出的方法,实验结果表明,我们的方法明显优于几种先进的诊断方法。