The Hatter Department of Marine Technologies, University of Haifa, Haifa 3498838, Israel.
Sensors (Basel). 2022 Feb 13;22(4):1426. doi: 10.3390/s22041426.
Quadrotor usage is continuously increasing for both civilian and military applications such as surveillance, mapping, and deliveries. Commonly, quadrotors use an inertial navigation system combined with a global navigation satellite systems receiver for outdoor applications and a camera for indoor/outdoor applications. For various reasons, such as lighting conditions or satellite signal blocking, the quadrotor's navigation solution depends only on the inertial navigation system solution. As a consequence, the navigation solution drifts in time due to errors and noises in the inertial sensor measurements. To handle such situations and bind the solution drift, the quadrotor dead reckoning (QDR) approach utilizes pedestrian dead reckoning principles. To that end, instead of flying the quadrotor in a straight line trajectory, it is flown in a periodic motion, in the vertical plane, to enable peak-to-peak (two local maximum points within the cycle) distance estimation. Although QDR manages to improve the pure inertial navigation solution, it has several shortcomings as it requires calibration before usage, provides only peak-to-peak distance, and does not provide the altitude of the quadrotor. To circumvent these issues, we propose QuadNet, a hybrid framework for quadrotor dead reckoning to estimate the quadrotor's three-dimensional position vector at any user-defined time rate. As a hybrid approach, QuadNet uses both neural networks and model-based equations during its operation. QuadNet requires only the inertial sensor readings to provide the position vector. Experimental results with DJI's Matrice 300 quadrotor are provided to show the benefits of using the proposed approach.
四旋翼飞行器在民用和军事领域的应用不断增加,例如监控、测绘和送货等。通常,四旋翼飞行器使用惯性导航系统结合全球导航卫星系统接收器用于户外应用,以及使用相机进行室内/户外应用。由于各种原因,例如照明条件或卫星信号阻塞,四旋翼飞行器的导航解决方案仅依赖于惯性导航系统解决方案。因此,由于惯性传感器测量中的误差和噪声,导航解决方案会随时间漂移。为了处理这种情况并绑定解决方案漂移,四旋翼飞行器推算(QDR)方法利用行人推算原理。为此,它不是沿着直线轨迹飞行,而是在垂直平面内以周期性运动飞行,以实现峰到峰(周期内的两个局部最大值点)距离估计。虽然 QDR 设法改善了纯惯性导航解决方案,但它有几个缺点,因为它在使用前需要校准,只能提供峰到峰距离,并且不提供四旋翼飞行器的高度。为了规避这些问题,我们提出了 QuadNet,这是一种用于四旋翼飞行器推算的混合框架,可在任何用户定义的时间速率下估计四旋翼飞行器的三维位置向量。作为一种混合方法,QuadNet 在其运行过程中同时使用神经网络和基于模型的方程。QuadNet 仅需要惯性传感器读数即可提供位置向量。提供了 DJI 的 Matrice 300 四旋翼飞行器的实验结果,以展示使用所提出方法的好处。