Mosleh Mohsen, Cole Rocky, Rand David G
Department of Management, University of Exeter Business School, Exeter, EX4 4PU, UK.
Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
PNAS Nexus. 2024 Mar 12;3(3):pgae111. doi: 10.1093/pnasnexus/pgae111. eCollection 2024 Mar.
There is considerable concern about users posting misinformation and harmful language on social media. Substantial-yet largely distinct-bodies of research have studied these two kinds of problematic content. Here, we shed light on both research streams by examining the relationship between the sharing of misinformation and the use of harmful language. We do so by creating and analyzing a dataset of 8,687,758 posts from = 6,832 Twitter (now called X) users, and a dataset of = 14,617 true and false headlines from professional fact-checking websites. Our analyses reveal substantial positive associations between misinformation and harmful language. On average, Twitter posts containing links to lower-quality news outlets also contain more harmful language (β = 0.10); and false headlines contain more harmful language than true headlines (β = 0.19). Additionally, Twitter users who share links to lower-quality news sources also use more harmful language-even in non-news posts that are unrelated to (mis)information (β = 0.13). These consistent findings across different datasets and levels of analysis suggest that misinformation and harmful language are related in important ways, rather than being distinct phenomena. At the same, however, the strength of associations is not sufficiently high to make the presence of harmful language a useful diagnostic for information quality: most low-quality information does not contain harmful language, and a considerable fraction of high-quality information does contain harmful language. Overall, our results underscore important opportunities to integrate these largely disconnected strands of research and understand their psychological connections.
用户在社交媒体上发布错误信息和有害语言引发了广泛关注。大量且在很大程度上相互独立的研究主体对这两类有问题的内容进行了研究。在此,我们通过考察错误信息分享与有害语言使用之间的关系,对这两个研究方向进行了阐释。我们通过创建并分析一个来自6832名推特(现称X)用户的8687758条推文数据集,以及一个来自专业事实核查网站的14617条真假标题数据集来做到这一点。我们的分析揭示了错误信息与有害语言之间存在显著的正相关关系。平均而言,包含指向质量较低新闻媒体链接的推特推文也包含更多有害语言(β = 0.10);虚假标题比真实标题包含更多有害语言(β = 0.19)。此外,分享指向质量较低新闻来源链接的推特用户也使用更多有害语言——即使在与(错误)信息无关的非新闻推文中也是如此(β = 0.13)。这些在不同数据集和分析层面上的一致发现表明,错误信息和有害语言在重要方面存在关联,而非截然不同的现象。然而,与此同时,这种关联的强度并不足以使有害语言的存在成为信息质量的有效诊断依据:大多数低质量信息并不包含有害语言,而且相当一部分高质量信息确实包含有害语言。总体而言,我们的结果强调了整合这些在很大程度上相互脱节的研究线索并理解它们心理联系的重要机遇。