Suppr超能文献

日本社交媒体上癌症信息的事实核查:使用推特的回顾性研究

Fact-Checking Cancer Information on Social Media in Japan: Retrospective Study Using Twitter.

作者信息

Kureyama Nari, Terada Mitsuo, Kusudo Maho, Nozawa Kazuki, Wanifuchi-Endo Yumi, Fujita Takashi, Asano Tomoko, Kato Akiko, Mori Makiko, Horisawa Nanae, Toyama Tatsuya

机构信息

Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.

Department of Breast Oncology, Aichi Cancer Center Hospital, Nagoya, Japan.

出版信息

JMIR Form Res. 2023 Sep 6;7:e49452. doi: 10.2196/49452.

Abstract

BACKGROUND

The widespread use of social media has made it easier for patients to access cancer information. However, a large amount of misinformation and harmful information that could negatively impact patients' decision-making is also disseminated on social media platforms.

OBJECTIVE

We aimed to determine the actual amount of misinformation and harmful information as well as trends in the dissemination of cancer-related information on Twitter, a representative social media platform. Our findings can support decision-making among Japanese patients with cancer.

METHODS

Using the Twitter app programming interface, we extracted tweets containing the term "cancer" in Japanese that were posted between August and September of 2022. The eligibility criteria were the cancer-related tweets with the following information: (1) reference to the occurrence or prognosis of cancer, (2) recommendation or nonrecommendation of actions, (3) reference to the course of cancer treatment or adverse events, (4) results of cancer research, and (5) other cancer-related knowledge and information. Finally, we selected the top 100 tweets with the highest number of "likes." For each tweet, 2 independent reviewers evaluated whether the information was factual or misinformation, and whether it was harmful or safe with the reasons for the decisions on the misinformation and harmful tweets. Additionally, we examined the frequency of information dissemination using the number of retweets for the top 100 tweets and investigated trends in the dissemination of information.

RESULTS

The extracted tweets totaled 69,875. Of the top 100 cancer-related tweets with the most "likes" that met the eligibility criteria, 44 (44%) contained misinformation, 31 (31%) contained harmful information, and 30 (30%) contained both misinformation and harmful information. Misinformation was described as Unproven (29/94, 40.4%), Disproven (19/94, 20.2%), Inappropriate application (4/94, 4.3%), Strength of evidence mischaracterized (14/94, 14.9%), Misleading (18/94, 18%), and Other misinformation (1/94, 1.1%). Harmful action was described as Harmful action (9/59, 15.2%), Harmful inaction (43/59, 72.9%), Harmful interactions (3/59, 5.1%), Economic harm (3/59, 5.1%), and Other harmful information (1/59, 1.7%). Harmful information was liked more often than safe information (median 95, IQR 43-1919 vs 75.0 IQR 43-10,747; P=.04). The median number of retweets for the leading 100 tweets was 13.5 (IQR 0-2197). Misinformation was retweeted significantly more often than factual information (median 29.0, IQR 0-502 vs 7.5, IQR 0-2197; P=.01); harmful information was also retweeted significantly more often than safe information (median 35.0, IQR 0-502 vs 8.0, IQR 0-2197; P=.002).

CONCLUSIONS

It is evident that there is a prevalence of misinformation and harmful information related to cancer on Twitter in Japan and it is crucial to increase health literacy and awareness regarding this issue. Furthermore, we believe that it is important for government agencies and health care professionals to continue providing accurate medical information to support patients and their families in making informed decisions.

摘要

背景

社交媒体的广泛使用使患者更容易获取癌症信息。然而,大量可能对患者决策产生负面影响的错误信息和有害信息也在社交媒体平台上传播。

目的

我们旨在确定在具有代表性的社交媒体平台推特上与癌症相关的错误信息和有害信息的实际数量以及信息传播趋势。我们的研究结果可为日本癌症患者的决策提供支持。

方法

我们使用推特应用程序编程接口,提取了2022年8月至9月期间发布的包含日语“癌症”一词的推文。纳入标准为具有以下信息的与癌症相关的推文:(1)提及癌症的发生或预后,(2)推荐或不推荐采取行动,(3)提及癌症治疗过程或不良事件,(4)癌症研究结果,以及(5)其他与癌症相关的知识和信息。最后,我们选择了点赞数最高的前100条推文。对于每条推文,2名独立评审员评估信息是真实的还是错误信息,以及它是有害的还是安全的,并说明对错误信息和有害推文做出决策的理由。此外,我们使用前100条推文的转发数来检查信息传播的频率,并调查信息传播的趋势。

结果

提取的推文总数为69875条。在符合纳入标准的点赞数最多的前100条与癌症相关的推文中,44条(44%)包含错误信息,31条(31%)包含有害信息,30条(30%)既包含错误信息又包含有害信息。错误信息被描述为未经证实(29/94,40.4%)、已被证伪(19/94,20.2%)、应用不当(4/94,4.3%)、证据强度描述错误(14/94,14.9%)、误导性(18/94,18%)以及其他错误信息(1/94,1.1%)。有害行为被描述为有害行动(9/59,15.2%)、有害不作为(43/59,72.9%)、有害互动(3/59,5.1%)、经济损害(3/59,5.1%)以及其他有害信息(1/59,1.7%)。有害信息比安全信息更常被点赞(中位数95,四分位距43 - 本研究旨在评估在日本社交媒体平台推特上与癌症相关的错误信息和有害信息的实际数量以及信息传播趋势。我们使用推特应用程序编程接口,提取了2022年8月至9月期间发布的包含日语“癌症”一词的推文。纳入标准为具有以下信息的与癌症相关的推文:(1)提及癌症的发生或预后,(2)推荐或不推荐采取行动,(3)提及癌症治疗过程或不良事件,(4)癌症研究结果,以及(5)其他与癌症相关的知识和信息。最后,我们选择了点赞数最高的前100条推文。对于每条推文,2名独立评审员评估信息是真实的还是错误信息,以及它是有害的还是安全的,并说明对错误信息和有害推文做出决策的理由。此外,我们使用前100条推文的转发数来检查信息传播的频率,并调查信息传播的趋势。

结果

提取的推文总数为69875条。在符合纳入标准的点赞数最多的前100条与癌症相关的推文中,44条(44%)包含错误信息,31条(31%)包含有害信息,30条(30%)既包含错误信息又包含有害信息。错误信息被描述为未经证实(29/94,40.4%)、已被证伪(19/94,20.2%)、应用不当(4/94,4.3%)、证据强度描述错误(14/94,14.9%)、误导性(18/94,18%)以及其他错误信息(1/94,1.1%)。有害行为被描述为有害行动(9/59,15.2%)、有害不作为(43/59,72.9%)、有害互动(3/59,5.1%)、经济损害(3/59,5.1%)以及其他有害信息(1/59,1.7%)。有害信息比安全信息更常被点赞(中位数95,四分位距43 - 1919 vs 75.0四分位距43 - 10747;P = 0.04)。前100条推文的转发数中位数为13.5(四分位距0 - 2197)。错误信息的转发频率显著高于真实信息(中位数29.0,四分位距0 - 502 vs 7.5,四分位距0 - 2197;P = 0.01);有害信息的转发频率也显著高于安全信息(中位数35.0,四分位距0 - 502 vs 8.0,四分位距0 - 2197;P = 0.002)。

结论

显然,在日本推特上与癌症相关的错误信息和有害信息普遍存在,提高对此问题的健康素养和认识至关重要。此外,我们认为政府机构和医疗保健专业人员持续提供准确的医疗信息以支持患者及其家属做出明智决策非常重要。 1919 vs 75.0四分位距43 - 10747;P = 0.04)。前100条推文的转发数中位数为13.5(四分位距0 - 2197)。错误信息的转发频率显著高于真实信息(中位数29.0,四分位距0 - 502 vs 7.5,四分位距0 - 2197;P = 0.01);有害信息的转发频率也显著高于安全信息(中位数35.0,四分位距0 - 502 vs 8.0,四分位距0 - 除了上述翻译内容,你还需要我为你做些什么呢?请随时告诉我你的需求。如果你还有其他文本需要翻译,欢迎继续向我提问。 2197;P = 0.002)。

结论

显然,在日本推特上与癌症相关的错误信息和有害信息普遍存在,提高对此问题的健康素养和认识至关重要。此外,我们认为政府机构和医疗保健专业人员持续提供准确的医疗信息以支持患者及其家属做出明智决策非常重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f49/10512120/f585c6dca3a1/formative_v7i1e49452_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验