Suppr超能文献

追踪剪接体 Ski2 样 RNA 解旋酶 Brr2 中的变构作用。

Tracing Allostery in the Spliceosome Ski2-like RNA Helicase Brr2.

机构信息

Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy.

International School for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34136 Trieste, Italy.

出版信息

J Phys Chem Lett. 2024 Apr 4;15(13):3502-3508. doi: 10.1021/acs.jpclett.3c03538. Epub 2024 Mar 22.

Abstract

RNA ATPases/helicases remodel substrate RNA-protein complexes in distinct ways. The different RNA ATPases/helicases, taking part in the spliceosome complex, reshape the RNA/RNA-protein contacts to enable premature-mRNA splicing. Among them, the bad response to refrigeration 2 (Brr2) helicase promotes U4/U6 small nuclear (sn)RNA unwinding via ATP-driven translocation of the U4 snRNA strand, thus playing a pivotal role during the activation, catalytic, and disassembly phases of splicing. The plastic Brr2 architecture consists of an enzymatically active N-terminal cassette (N-cassette) and a structurally similar but inactive C-terminal cassette (C-cassette). The C-cassette, along with other allosteric effectors and regulators, tightly and timely controls Brr2's function via an elusive mechanism. Here, microsecond-long molecular dynamics simulations, dynamical network theory, and community network analysis are combined to elucidate how allosteric effectors/regulators modulate the Brr2 function. We unexpectedly reveal that U4 snRNA itself acts as an allosteric regulator, amplifying the cross-talk of distal Brr2 domains and triggering a conformational reorganization of the protein. Our findings offer fundamental understanding into Brr2's mechanism of action and broaden our knowledge on the sophisticated regulatory mechanisms by which spliceosome ATPases/helicases control gene expression. This includes their allosteric regulation exerted by client RNA strands, a mechanism that may be broadly applicable to other RNA-dependent ATPases/helicases.

摘要

RNA 解旋酶/ATP 酶以不同的方式重塑底物 RNA-蛋白质复合物。参与剪接体复合物的不同 RNA 解旋酶/ATP 酶重塑 RNA/RNA-蛋白质接触,以实现前体 mRNA 的剪接。其中,对冷藏不良反应 2 (Brr2) 解旋酶通过 U4 snRNA 链的 ATP 驱动易位促进 U4/U6 小核 (sn)RNA 解旋,因此在剪接的激活、催化和解体阶段发挥关键作用。灵活的 Brr2 结构由具有酶活性的 N 端盒 (N-盒) 和结构相似但无活性的 C 端盒 (C-盒) 组成。C-盒与其他变构效应物和调节剂一起,通过一种难以捉摸的机制,紧密且及时地控制 Brr2 的功能。在这里,将微秒级别的分子动力学模拟、动态网络理论和社区网络分析相结合,以阐明变构效应物/调节剂如何调节 Brr2 的功能。我们意外地发现,U4 snRNA 本身作为一种变构调节剂,放大了 Brr2 远端结构域之间的串扰,并触发了蛋白质构象的重新组织。我们的发现为 Brr2 的作用机制提供了基本的理解,并拓宽了我们对剪接体 ATP 酶/解旋酶如何控制基因表达的复杂调节机制的认识。这包括由客户 RNA 链施加的变构调节,这一机制可能广泛适用于其他 RNA 依赖性 ATP 酶/解旋酶。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验