Istanbul University Istanbul Medical Faculty, Istanbul, Turkey.
Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America.
PLoS One. 2024 Mar 22;19(3):e0300340. doi: 10.1371/journal.pone.0300340. eCollection 2024.
Monoamine transporters including transporters for serotonin, dopamine, and norepinephrine play key roles in monoaminergic synaptic signaling, involving in the molecular etiology of a wide range of neurological and physiological disorders. Despite being crucial drug targets, the study of transmembrane proteins remains challenging due to their localization within the cell membrane. To address this, we present the structural bioinformatics studies of 7 monoamine transporters and their water-soluble variants designed using the QTY code, by systematically replacing the hydrophobic amino acids leucine (L), valine (V), isoleucine (I) and phenylalanine (F) with hydrophilic amino acids (glutamine (Q), threonine (T) and tyrosine (Y). The resulting QTY variants, despite significant protein transmembrane sequence differences (44.27%-51.85%), showed similar isoelectric points (pI) and molecular weights. While their hydrophobic surfaces significantly reduced, this change resulted in a minimal structural alteration. Quantitatively, Alphafold2 predicted QTY variant structures displayed remarkable similarity with RMSD 0.492Å-1.619Å. Accompanied by the structural similarities of substituted amino acids in the context of 1.5Å electron density maps, our study revealed multiple QTY and reverse QTY variations in genomic databases. We further analyzed their phenotypical and topological characteristics. By extending evolutionary game theory to the molecular foundations of biology, we provided insights into the evolutionary dynamics of chemically distinct alpha-helices, their usage in different chemotherapeutic applications, and open possibilities of diagnostic medicine. Our study rationalizes that QTY variants of monoamine transporters may not only become distinct tools for medical, structural, and evolutionary research, but these transporters may also emerge as contemporary therapeutic targets, providing a new approach to treatment for several conditions.
单胺转运体包括 5-羟色胺、多巴胺和去甲肾上腺素转运体,在单胺能突触信号中发挥关键作用,涉及多种神经和生理紊乱的分子病因。尽管它们是至关重要的药物靶点,但由于它们位于细胞膜内,跨膜蛋白的研究仍然具有挑战性。为了解决这个问题,我们使用 QTY 密码子对 7 种单胺转运体及其水溶性变体进行了结构生物信息学研究,系统地用亲水氨基酸(谷氨酰胺(Q)、苏氨酸(T)和酪氨酸(Y)取代疏水性氨基酸(亮氨酸(L)、缬氨酸(V)、异亮氨酸(I)和苯丙氨酸(F)。尽管蛋白质跨膜序列差异较大(44.27%-51.85%),但所得的 QTY 变体具有相似的等电点(pI)和分子量。虽然它们的疏水性表面显著减少,但这种变化导致结构的微小改变。定量地,Alphafold2 预测的 QTY 变体结构与 RMSD 0.492Å-1.619Å具有显著相似性。伴随着电子密度图中替代氨基酸的结构相似性,我们的研究在基因组数据库中发现了多种 QTY 和反向 QTY 变体。我们进一步分析了它们的表型和拓扑特征。通过将进化博弈论扩展到生物学的分子基础,我们深入了解了化学上不同的α-螺旋的进化动态、它们在不同化学治疗应用中的使用以及诊断医学的可能性。我们的研究合理地表明,单胺转运体的 QTY 变体不仅可能成为医学、结构和进化研究的独特工具,而且这些转运体也可能成为当代治疗靶点,为多种疾病的治疗提供新方法。