Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
AIRS Medical, Seoul, 06142, Republic of Korea.
Sci Rep. 2024 Oct 25;14(1):25349. doi: 10.1038/s41598-024-76592-7.
Dynamic contrast-enhanced MRI (DCE-MRI) is increasingly used to non-invasively image blood-brain barrier leakage, yet its clinical utility has been hampered by issues such as noise and partial volume artifacts. In this retrospective study involving 306 adult patients with diffuse glioma, we applied deep learning-based super-resolution and denoising (DLSD) techniques to enhance the signal-to-noise ratio (SNR) and resolution of DCE-MRI. Quantitative analysis comparing standard DCE-MRI (std-DCE) and DL-enhanced DCE-MRI (DL-DCE) revealed that DL-DCE achieved significantly higher SNR and contrast-to-noise ratio (CNR) compared to std-DCE (SNR, 52.09 vs 27.21; CNR, 9.40 vs 4.71; P < 0.001 for all). Diagnostic performance assessed by the area under the receiver operating characteristic curve (AUROC) showed improved differentiation of WHO grades based on a pharmacokinetic parameter [Formula: see text] (AUC, 0.88 vs 0.83, P = 0.02), while remaining comparable to std-DCE in other parameters. Analysis of arterial input function (AIF) reliability demonstrated that [Formula: see text] exhibited superior agreement compared to [Formula: see text], as indicated by mostly higher intraclass correlation coefficients (Time to peak, 0.79 vs 0.43, P < 0.001). In conclusion, DLSD significantly enhances both the image quality and reliability of DCE-MRI in patients with diffuse glioma, while maintaining or improving diagnostic performance.
动态对比增强磁共振成像(DCE-MRI)越来越多地用于无创性成像血脑屏障通透性,但由于噪声和部分容积伪影等问题,其临床应用受到限制。在这项涉及 306 例弥漫性胶质瘤成人患者的回顾性研究中,我们应用基于深度学习的超分辨率和去噪(DLSD)技术来提高 DCE-MRI 的信噪比(SNR)和分辨率。与标准 DCE-MRI(std-DCE)相比,定量分析比较了 DL 增强 DCE-MRI(DL-DCE),发现 DL-DCE 实现了更高的 SNR 和对比噪声比(CNR)(SNR,52.09 对 27.21;CNR,9.40 对 4.71;P < 0.001)。基于药代动力学参数[Formula: see text]评估的受试者工作特征曲线(AUROC)下面积(AUC)的诊断性能显示,基于[Formula: see text],可以更好地区分 WHO 分级(AUC,0.88 对 0.83,P = 0.02),而在其他参数方面与 std-DCE 相当。动脉输入函数(AIF)可靠性分析表明,[Formula: see text]与[Formula: see text]相比,表现出更高的一致性,这表明更高的组内相关系数(达峰时间,0.79 对 0.43,P < 0.001)。总之,DLSD 显著提高了弥漫性胶质瘤患者 DCE-MRI 的图像质量和可靠性,同时保持或提高了诊断性能。