Suppr超能文献

学习型健康系统 2.0 的进展:对学习健康系统应对大流行病和气候变化的反应进行快速审查。

Progress with the Learning Health System 2.0: a rapid review of Learning Health Systems' responses to pandemics and climate change.

机构信息

Centre for Healthcare Resilience and Implementation Science, Australian Institute of Health Innovation, Macquarie University, 75 Talavera Road, North Ryde 2113, Sydney, Australia.

NHMRC Partnership Centre for Health System Sustainability, Macquarie University, 75 Talavera Road, North Ryde 2113, Sydney, Australia.

出版信息

BMC Med. 2024 Mar 22;22(1):131. doi: 10.1186/s12916-024-03345-8.

Abstract

BACKGROUND

Pandemics and climate change each challenge health systems through increasing numbers and new types of patients. To adapt to these challenges, leading health systems have embraced a Learning Health System (LHS) approach, aiming to increase the efficiency with which data is translated into actionable knowledge. This rapid review sought to determine how these health systems have used LHS frameworks to both address the challenges posed by the COVID-19 pandemic and climate change, and to prepare for future disturbances, and thus transition towards the LHS2.0.

METHODS

Three databases (Embase, Scopus, and PubMed) were searched for peer-reviewed literature published in English in the five years to March 2023. Publications were included if they described a real-world LHS's response to one or more of the following: the COVID-19 pandemic, future pandemics, current climate events, future climate change events. Data were extracted and thematically analyzed using the five dimensions of the Institute of Medicine/Zurynski-Braithwaite's LHS framework: Science and Informatics, Patient-Clinician Partnerships, Continuous Learning Culture, Incentives, and Structure and Governance.

RESULTS

The search yielded 182 unique publications, four of which reported on LHSs and climate change. Backward citation tracking yielded 13 additional pandemic-related publications. None of the climate change-related papers met the inclusion criteria. Thirty-two publications were included after full-text review. Most were case studies (n = 12, 38%), narrative descriptions (n = 9, 28%) or empirical studies (n = 9, 28%). Science and Informatics (n = 31, 97%), Continuous Learning Culture (n = 26, 81%), Structure and Governance (n = 23, 72%) were the most frequently discussed LHS dimensions. Incentives (n = 21, 66%) and Patient-Clinician Partnerships (n = 18, 56%) received less attention. Twenty-nine papers (91%) discussed benefits or opportunities created by pandemics to furthering the development of an LHS, compared to 22 papers (69%) that discussed challenges.

CONCLUSIONS

An LHS 2.0 approach appears well-suited to responding to the rapidly changing and uncertain conditions of a pandemic, and, by extension, to preparing health systems for the effects of climate change. LHSs that embrace a continuous learning culture can inform patient care, public policy, and public messaging, and those that wisely use IT systems for decision-making can more readily enact surveillance systems for future pandemics and climate change-related events.

TRIAL REGISTRATION

PROSPERO pre-registration: CRD42023408896.

摘要

背景

大流行和气候变化都通过增加患者数量和新类型来挑战卫生系统。为了适应这些挑战,领先的卫生系统已经采用了学习卫生系统(LHS)方法,旨在提高数据转化为可操作知识的效率。本快速审查旨在确定这些卫生系统如何使用 LHS 框架来应对 COVID-19 大流行和气候变化带来的挑战,并为未来的干扰做好准备,从而向 LHS2.0 过渡。

方法

在 2023 年 3 月之前的五年内,在 Embase、Scopus 和 PubMed 三个数据库中搜索了发表在英文同行评审文献中的文献。如果出版物描述了现实世界的 LHS 对以下一项或多项的反应,则将其包括在内:COVID-19 大流行、未来的大流行、当前的气候事件、未来的气候变化事件。使用 Institute of Medicine/Zurynski-Braithwaite 的 LHS 框架的五个维度(科学与信息学、医患伙伴关系、持续学习文化、激励措施以及结构和治理)提取和进行主题分析数据。

结果

搜索产生了 182 篇独特的出版物,其中 4 篇报告了 LHS 与气候变化之间的关系。回溯引文追踪产生了 13 篇额外的与大流行相关的出版物。没有一篇与气候变化相关的论文符合纳入标准。经过全文审查后,共纳入 32 篇出版物。大多数是案例研究(n=12,38%)、叙述性描述(n=9,28%)或实证研究(n=9,28%)。科学与信息学(n=31,97%)、持续学习文化(n=26,81%)、结构和治理(n=23,72%)是讨论最多的 LHS 维度。激励措施(n=21,66%)和医患伙伴关系(n=18,56%)受到的关注较少。29 篇论文(91%)讨论了大流行带来的好处或机遇,以进一步发展 LHS,而 22 篇论文(69%)则讨论了挑战。

结论

LHS 2.0 方法似乎非常适合应对大流行带来的快速变化和不确定的情况,并且可以扩展到为气候变化对卫生系统的影响做好准备。采用持续学习文化的 LHS 可以为患者护理、公共政策和公共信息提供信息,并且明智地使用 IT 系统进行决策的 LHS 可以更轻松地为未来的大流行和与气候变化相关的事件制定监测系统。

试验注册

PROSPERO 预注册:CRD42023408896。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acbb/10960489/c3fd629e3365/12916_2024_3345_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验