School of Biomedical Engineering, ShanghaiTech University, Shanghai, China.
School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
NMR Biomed. 2024 Aug;37(8):e5133. doi: 10.1002/nbm.5133. Epub 2024 Mar 23.
The purpose of the current study was to explore the feasibility of training a deep neural network to accelerate the process of generating T1, T2, and T1ρ maps for a recently proposed free-breathing cardiac multiparametric mapping technique, where a recurrent neural network (RNN) was utilized to exploit the temporal correlation among the multicontrast images. The RNN-based model was developed for rapid and accurate T1, T2, and T1ρ estimation. Bloch simulation was performed to simulate a dataset of more than 10 million signals and time correspondences with different noise levels for network training. The proposed RNN-based method was compared with a dictionary-matching method and a conventional mapping method to evaluate the model's effectiveness in phantom and in vivo studies at 3 T, respectively. In phantom studies, the RNN-based method and the dictionary-matching method achieved similar accuracy and precision in T1, T2, and T1ρ estimations. In in vivo studies, the estimated T1, T2, and T1ρ values obtained by the two methods achieved similar accuracy and precision for 10 healthy volunteers (T1: 1228.70 ± 53.80 vs. 1228.34 ± 52.91 ms, p > 0.1; T2: 40.70 ± 2.89 vs. 41.19 ± 2.91 ms, p > 0.1; T1ρ: 45.09 ± 4.47 vs. 45.23 ± 4.65 ms, p > 0.1). The RNN-based method can generate cardiac multiparameter quantitative maps simultaneously in just 2 s, achieving 60-fold acceleration compared with the dictionary-matching method. The RNN-accelerated method offers an almost instantaneous approach for reconstructing accurate T1, T2, and T1ρ maps, being much more efficient than the dictionary-matching method for the free-breathing multiparametric cardiac mapping technique, which may pave the way for inline mapping in clinical applications.
本研究旨在探索训练深度神经网络以加速最近提出的自由呼吸心脏多参数映射技术的 T1、T2 和 T1ρ 图生成过程的可行性。该技术采用递归神经网络(RNN)来利用多对比度图像之间的时间相关性。基于 RNN 的模型用于快速准确地估计 T1、T2 和 T1ρ。通过布洛赫模拟,对具有不同噪声水平的超过 1000 万个信号和时间对应关系的数据集进行了模拟,以便进行网络训练。在 3T 下,通过体模和体内研究分别比较了基于 RNN 的方法与字典匹配方法和传统映射方法,以评估模型的有效性。在体模研究中,基于 RNN 的方法和字典匹配方法在 T1、T2 和 T1ρ 估计中具有相似的准确性和精度。在体内研究中,两种方法估计的 10 名健康志愿者的 T1、T2 和 T1ρ 值具有相似的准确性和精度(T1:1228.70±53.80 与 1228.34±52.91 ms,p>0.1;T2:40.70±2.89 与 41.19±2.91 ms,p>0.1;T1ρ:45.09±4.47 与 45.23±4.65 ms,p>0.1)。基于 RNN 的方法仅需 2s 即可同时生成心脏多参数定量图,与字典匹配方法相比实现了 60 倍的加速。RNN 加速方法为准确重建 T1、T2 和 T1ρ 图提供了一种近乎即时的方法,比字典匹配方法在自由呼吸多参数心脏映射技术中更高效,这可能为临床应用中的在线映射铺平道路。