Suppr超能文献

使用深度学习 Bloch 方程模拟(DeepBLESS)快速准确地计算心肌 T 和 T 值。

Fast and accurate calculation of myocardial T and T values using deep learning Bloch equation simulations (DeepBLESS).

机构信息

Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.

Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, California, USA.

出版信息

Magn Reson Med. 2020 Nov;84(5):2831-2845. doi: 10.1002/mrm.28321. Epub 2020 May 16.

Abstract

PURPOSE

To propose and evaluate a deep learning model for rapid and accurate calculation of myocardial T /T values based on a previously proposed Bloch equation simulation with slice profile correction (BLESSPC) method.

METHODS

Deep learning Bloch equation simulations (DeepBLESS) models are proposed for rapid and accurate T estimation for the MOLLI T mapping sequence with balanced SSFP readouts and T /T estimation for a radial simultaneous T and T mapping (radial T -T ) sequence. The DeepBLESS models were trained separately based on simulated radial T -T and MOLLI data, respectively. The DeepBLESS T -T estimation accuracy was evaluated based on simulated data with different noise levels. The DeepBLESS model was compared with BLESSPC in simulation, phantom, and in vivo studies for the MOLLI sequence at 1.5 T and radial T -T sequence at 3 T.

RESULTS

After DeepBLESS was trained, in phantom studies, DeepBLESS and BLESSPC achieved similar accuracy and precision in T -T estimations for both MOLLI and radial T -T (P > .05). For in vivo, DeepBLESS and BLESSPC generated similar myocardial T /T values for radial T -T at 3 T (T : 1366 ± 31 ms for both methods, P > .05; T : 37.4 ms ± 0.9 ms for both methods, P > .05), and similar myocardial T values for the MOLLI sequence at 1.5 T (1044 ± 20 ms for both methods, P > .05). DeepBLESS generated a T /T map in less than 1 second.

CONCLUSION

The DeepBLESS model offers an almost instantaneous approach for estimating accurate T /T values, replacing BLESSPC for both MOLLI and radial T -T sequences, and is promising for multiparametric mapping in cardiac MRI.

摘要

目的

提出并评估一种基于先前提出的带层面轮廓校正的布洛赫方程模拟(BLESSPC)方法的深度学习模型,用于快速准确地计算心肌 T/T 值。

方法

针对具有平衡 SSFP 读取的 MOLLI T 映射序列,提出了快速准确的 T 估计的深度学习布洛赫方程模拟(DeepBLESS)模型,以及用于径向同时 T 和 T 映射(径向 T-T)序列的 T/T 估计的模型。DeepBLESS 模型分别基于模拟的径向 T-T 和 MOLLI 数据进行训练。基于具有不同噪声水平的模拟数据评估 DeepBLESS T-T 估计准确性。在模拟、体模和体内研究中,将 DeepBLESS 模型与 BLESSPC 进行了比较,用于 1.5T 的 MOLLI 序列和 3T 的径向 T-T 序列。

结果

在 DeepBLESS 训练后,在体模研究中,DeepBLESS 和 BLESSPC 在 MOLLI 和径向 T-T 的 T-T 估计中均达到相似的准确性和精密度(P >.05)。对于体内,DeepBLESS 和 BLESSPC 在 3T 时产生相似的径向 T-T 的心肌 T/T 值(T:两种方法均为 1366 ± 31ms,P >.05;T:两种方法均为 37.4ms ± 0.9ms,P >.05),以及在 1.5T 时 MOLLI 序列的相似心肌 T 值(两种方法均为 1044 ± 20ms,P >.05)。DeepBLESS 在不到 1 秒的时间内生成 T/T 图。

结论

DeepBLESS 模型提供了一种几乎即时的方法来估计准确的 T/T 值,替代了 MOLLI 和径向 T-T 序列的 BLESSPC,有望用于心脏 MRI 的多参数映射。

相似文献

引用本文的文献

本文引用的文献

1
Machine Learning for Rapid Magnetic Resonance Fingerprinting Tissue Property Quantification.用于快速磁共振指纹组织特性定量的机器学习
Proc IEEE Inst Electr Electron Eng. 2020 Jan;108(1):69-85. doi: 10.1109/JPROC.2019.2936998. Epub 2019 Sep 11.
9
MR fingerprinting Deep RecOnstruction NEtwork (DRONE).磁共振指纹成像深度重建网络(DRONE)。
Magn Reson Med. 2018 Sep;80(3):885-894. doi: 10.1002/mrm.27198. Epub 2018 Apr 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验