Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, Australia.
Central Clinical School, University of Sydney, Sydney, Australia.
J Neurol. 2024 Jun;271(6):3426-3438. doi: 10.1007/s00415-023-11997-4. Epub 2024 Mar 23.
Vestibular migraine (VM) and Menière's disease (MD) are two common causes of recurrent spontaneous vertigo. Using history, video-nystagmography and audiovestibular tests, we developed machine learning models to separate these two disorders.
We recruited patients with VM or MD from a neurology outpatient facility. One hundred features from six "feature subsets": history, acute video-nystagmography and four laboratory tests (video head impulse test, vestibular-evoked myogenic potentials, caloric testing and audiogram) were used. We applied ten machine learning algorithms to develop classification models. Modelling was performed using three "tiers" of data availability to simulate three clinical settings. "Tier 1" used all available data to simulate the neuro-otology clinic, "Tier 2" used only history, audiogram and caloric test data, representing the general neurology clinic, and "Tier 3" used history alone as occurs in primary care. Model performance was evaluated using tenfold cross-validation.
Data from 160 patients with VM and 114 with MD were used for model development. All models effectively separated the two disorders for all three tiers, with accuracies of 85.77-97.81%. The best performing algorithms (AdaBoost and Random Forest) yielded accuracies of 97.81% (95% CI 95.24-99.60), 94.53% (91.09-99.52%) and 92.34% (92.28-96.76%) for tiers 1, 2 and 3. The best feature subset combination was history, acute video-nystagmography, video head impulse test and caloric testing, and the best single feature subset was history.
Machine learning models can accurately differentiate between VM and MD and are promising tools to assist diagnosis by medical practitioners with diverse levels of expertise and resources.
前庭性偏头痛(VM)和梅尼埃病(MD)是两种常见的复发性自发性眩晕的病因。我们通过使用病史、视频眼震图和听觉前庭测试,开发了机器学习模型来区分这两种疾病。
我们从神经病学门诊招募了 VM 或 MD 患者。从六个“特征子集”中使用了 100 个特征:病史、急性视频眼震图和四项实验室测试(视频头脉冲测试、前庭诱发肌源性电位、冷热测试和听力图)。我们应用了十种机器学习算法来开发分类模型。使用三种数据可用性“层次”进行建模,以模拟三种临床情况。“层次 1”使用所有可用数据来模拟神经耳科诊所,“层次 2”仅使用病史、听力图和冷热测试数据来模拟一般神经内科诊所,“层次 3”仅使用病史来模拟初级保健。使用十折交叉验证评估模型性能。
用于模型开发的数据来自 160 例 VM 患者和 114 例 MD 患者。所有模型都有效地分离了这两种疾病,在所有三个层次上的准确率为 85.77-97.81%。表现最好的算法(AdaBoost 和随机森林)在层次 1、2 和 3 中的准确率分别为 97.81%(95%CI 95.24-99.60)、94.53%(91.09-99.52%)和 92.34%(92.28-96.76%)。最佳特征子集组合是病史、急性视频眼震图、视频头脉冲测试和冷热测试,最佳单一特征子集是病史。
机器学习模型可以准确地区分 VM 和 MD,是一种有前途的工具,可以帮助具有不同专业知识和资源水平的医疗从业者进行诊断。