Suppr超能文献

PHE-SICH-CT-IDS:用于评估自发性脑出血血肿周围水肿的语义分割、目标检测和放射组学特征提取的 CT 图像基准数据集。

PHE-SICH-CT-IDS: A benchmark CT image dataset for evaluation semantic segmentation, object detection and radiomic feature extraction of perihematomal edema in spontaneous intracerebral hemorrhage.

机构信息

Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, China.

Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, China.

出版信息

Comput Biol Med. 2024 May;173:108342. doi: 10.1016/j.compbiomed.2024.108342. Epub 2024 Mar 20.

Abstract

BACKGROUND AND OBJECTIVE

Intracerebral hemorrhage is one of the diseases with the highest mortality and poorest prognosis worldwide. Spontaneous intracerebral hemorrhage (SICH) typically presents acutely, prompt and expedited radiological examination is crucial for diagnosis, localization, and quantification of the hemorrhage. Early detection and accurate segmentation of perihematomal edema (PHE) play a critical role in guiding appropriate clinical intervention and enhancing patient prognosis. However, the progress and assessment of computer-aided diagnostic methods for PHE segmentation and detection face challenges due to the scarcity of publicly accessible brain CT image datasets.

METHODS

This study establishes a publicly available CT dataset named PHE-SICH-CT-IDS for perihematomal edema in spontaneous intracerebral hemorrhage. The dataset comprises 120 brain CT scans and 7,022 CT images, along with corresponding medical information of the patients. To demonstrate its effectiveness, classical algorithms for semantic segmentation, object detection, and radiomic feature extraction are evaluated. The experimental results confirm the suitability of PHE-SICH-CT-IDS for assessing the performance of segmentation, detection and radiomic feature extraction methods.

RESULTS

This study conducts numerous experiments using classical machine learning and deep learning methods, demonstrating the differences in various segmentation and detection methods on the PHE-SICH-CT-IDS. The highest precision achieved in semantic segmentation is 76.31%, while object detection attains a maximum precision of 97.62%. The experimental results on radiomic feature extraction and analysis prove the suitability of PHE-SICH-CT-IDS for evaluating image features and highlight the predictive value of these features for the prognosis of SICH patients.

CONCLUSION

To the best of our knowledge, this is the first publicly available dataset for PHE in SICH, comprising various data formats suitable for applications across diverse medical scenarios. We believe that PHE-SICH-CT-IDS will allure researchers to explore novel algorithms, providing valuable support for clinicians and patients in the clinical setting. PHE-SICH-CT-IDS is freely published for non-commercial purpose at https://figshare.com/articles/dataset/PHE-SICH-CT-IDS/23957937.

摘要

背景与目的

脑出血是全球病死率和预后最差的疾病之一。自发性脑出血(SICH)通常发病急骤,及时进行影像学检查对于诊断、定位和出血量评估至关重要。血肿周围水肿(PHE)的早期检测和准确分割对于指导适当的临床干预和改善患者预后具有关键作用。然而,由于公开获取的脑 CT 图像数据集稀缺,PHE 分割和检测的计算机辅助诊断方法的进展和评估面临挑战。

方法

本研究建立了一个名为 PHE-SICH-CT-IDS 的用于自发性脑出血的血肿周围水肿公开 CT 数据集。该数据集包含 120 例脑 CT 扫描和 7022 张 CT 图像,以及患者的相应医学信息。为了验证其有效性,评估了经典的语义分割、目标检测和放射组学特征提取算法。实验结果证实了 PHE-SICH-CT-IDS 适合评估分割、检测和放射组学特征提取方法的性能。

结果

本研究使用经典的机器学习和深度学习方法进行了多项实验,展示了不同的 PHE-SICH-CT-IDS 分割和检测方法之间的差异。语义分割的最高精度达到 76.31%,而目标检测的最高精度达到 97.62%。放射组学特征提取和分析的实验结果证明了 PHE-SICH-CT-IDS 适合评估图像特征,并强调了这些特征对 SICH 患者预后的预测价值。

结论

据我们所知,这是首个用于 SICH 的 PHE 公开数据集,包含了各种适合不同医疗场景应用的数据格式。我们相信,PHE-SICH-CT-IDS 将吸引研究人员探索新的算法,为临床医生和患者提供有价值的支持。PHE-SICH-CT-IDS 可在非商业目的下在 https://figshare.com/articles/dataset/PHE-SICH-CT-IDS/23957937 上免费获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验