Suppr超能文献

一种用于非增强头部计算机断层扫描(CT)上脑内出血和血肿周围水肿分割的混合Transformer-卷积神经网络,具有不确定性量化以提高可信度。

A Hybrid Transformer-Convolutional Neural Network for Segmentation of Intracerebral Hemorrhage and Perihematomal Edema on Non-Contrast Head Computed Tomography (CT) with Uncertainty Quantification to Improve Confidence.

作者信息

Tran Anh T, Desser Dmitriy, Zeevi Tal, Abou Karam Gaby, Dierksen Fiona, Dell'Orco Andrea, Kniep Helge, Hanning Uta, Fiehler Jens, Zietz Julia, Sanelli Pina C, Malhotra Ajay, Duncan James S, Aneja Sanjay, Falcone Guido J, Qureshi Adnan I, Sheth Kevin N, Nawabi Jawed, Payabvash Seyedmehdi

机构信息

Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA.

Department of Neuroradiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität Zu Berlin, Freie Universität Berlin, Berlin Institute of Health, 10117 Berlin, Germany.

出版信息

Bioengineering (Basel). 2024 Dec 15;11(12):1274. doi: 10.3390/bioengineering11121274.

Abstract

Intracerebral hemorrhage (ICH) and perihematomal edema (PHE) are key imaging markers of primary and secondary brain injury in hemorrhagic stroke. Accurate segmentation and quantification of ICH and PHE can help with prognostication and guide treatment planning. In this study, we combined Swin-Unet Transformers with nnU-NETv2 convolutional network for segmentation of ICH and PHE on non-contrast head CTs. We also applied test-time data augmentations to assess individual-level prediction uncertainty, ensuring high confidence in prediction. The model was trained on 1782 CT scans from a multicentric trial and tested in two independent datasets from Yale (n = 396) and University of Berlin Charité Hospital and University Medical Center Hamburg-Eppendorf (n = 943). Model performance was evaluated with the Dice coefficient and Volume Similarity (VS). Our dual Swin-nnUNET model achieved a median (95% confidence interval) Dice = 0.93 (0.90-0.95) and VS = 0.97 (0.95-0.98) for ICH, and Dice = 0.70 (0.64-0.75) and VS = 0.87 (0.80-0.93) for PHE segmentation in the Yale cohort. Dice = 0.86 (0.80-0.90) and VS = 0.91 (0.85-0.95) for ICH and Dice = 0.65 (0.56-0.70) and VS = 0.86 (0.77-0.93) for PHE segmentation in the Berlin/Hamburg-Eppendorf cohort. Prediction uncertainty was associated with lower segmentation accuracy, smaller ICH/PHE volumes, and infratentorial location. Our results highlight the benefits of a dual transformer-convolutional neural network architecture for ICH/PHE segmentation and test-time augmentation for uncertainty quantification.

摘要

脑出血(ICH)和血肿周围水肿(PHE)是出血性卒中原发性和继发性脑损伤的关键影像学标志物。准确分割和量化ICH和PHE有助于预后评估并指导治疗方案的制定。在本研究中,我们将Swin-Unet Transformer与nnU-NETv2卷积网络相结合,用于在非增强头部CT上分割ICH和PHE。我们还应用了测试时数据增强来评估个体水平的预测不确定性,确保对预测有高度信心。该模型在一项多中心试验的1782例CT扫描上进行训练,并在耶鲁大学(n = 396)以及柏林夏里特大学医院和汉堡-埃彭多夫大学医学中心(n = 943)的两个独立数据集中进行测试。使用Dice系数和体积相似性(VS)评估模型性能。我们的双Swin-nnUNET模型在耶鲁队列中对ICH的分割达到中位数(95%置信区间)Dice = 0.93(0.90 - 0.95)和VS = 0.97(0.95 - 0.98),对PHE分割的Dice = 0.70(0.64 - 0.75)和VS = 0.87(0.80 - 0.93)。在柏林/汉堡-埃彭多夫队列中,对ICH分割的Dice = 0.86(0.80 - 0.90)和VS = 0.91(0.85 - 0.95),对PHE分割的Dice = 0.65(0.56 - 0.70)和VS = 0.86(0.77 - 0.93)。预测不确定性与较低的分割准确性、较小的ICH/PHE体积以及幕下位置相关。我们的结果突出了双变压器-卷积神经网络架构在ICH/PHE分割方面的优势以及测试时增强在不确定性量化方面的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d66c/11672977/54caf40907a3/bioengineering-11-01274-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验