Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, China.
Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, China.
Comput Biol Med. 2024 Mar;171:108217. doi: 10.1016/j.compbiomed.2024.108217. Epub 2024 Feb 28.
Endometrial cancer is one of the most common tumors in the female reproductive system and is the third most common gynecological malignancy that causes death after ovarian and cervical cancer. Early diagnosis can significantly improve the 5-year survival rate of patients. With the development of artificial intelligence, computer-assisted diagnosis plays an increasingly important role in improving the accuracy and objectivity of diagnosis and reducing the workload of doctors. However, the absence of publicly available image datasets restricts the application of computer-assisted diagnostic techniques.
In this paper, a publicly available Endometrial Cancer PET/CT Image Dataset for Evaluation of Semantic Segmentation and Detection of Hypermetabolic Regions (ECPC-IDS) are published. Specifically, the segmentation section includes PET and CT images, with 7159 images in multiple formats totally. In order to prove the effectiveness of segmentation on ECPC-IDS, six deep learning semantic segmentation methods are selected to test the image segmentation task. The object detection section also includes PET and CT images, with 3579 images and XML files with annotation information totally. Eight deep learning methods are selected for experiments on the detection task.
This study is conduct using deep learning-based semantic segmentation and object detection methods to demonstrate the distinguishability on ECPC-IDS. From a separate perspective, the minimum and maximum values of Dice on PET images are 0.546 and 0.743, respectively. The minimum and maximum values of Dice on CT images are 0.012 and 0.510, respectively. The target detection section's maximum mAP values on PET and CT images are 0.993 and 0.986, respectively.
As far as we know, this is the first publicly available dataset of endometrial cancer with a large number of multi-modality images. ECPC-IDS can assist researchers in exploring new algorithms to enhance computer-assisted diagnosis, benefiting both clinical doctors and patients. ECPC-IDS is also freely published for non-commercial at: https://figshare.com/articles/dataset/ECPC-IDS/23808258.
子宫内膜癌是女性生殖系统最常见的肿瘤之一,是继卵巢癌和宫颈癌之后导致死亡的第三大常见妇科恶性肿瘤。早期诊断可以显著提高患者的 5 年生存率。随着人工智能的发展,计算机辅助诊断在提高诊断的准确性和客观性以及减轻医生的工作量方面发挥着越来越重要的作用。然而,缺乏公开的图像数据集限制了计算机辅助诊断技术的应用。
本文发布了一个用于评估语义分割和代谢活跃区域检测的子宫内膜癌 PET/CT 图像数据集(Endometrial Cancer PET/CT Image Dataset for Evaluation of Semantic Segmentation and Detection of Hypermetabolic Regions,ECPC-IDS)。具体来说,分割部分包括 PET 和 CT 图像,共有 7159 张多种格式的图像。为了证明 ECPC-IDS 上分割的有效性,选择了六种深度学习语义分割方法来测试图像分割任务。对象检测部分还包括 PET 和 CT 图像,以及 3579 张图像和带有注释信息的 XML 文件。选择了八种深度学习方法进行检测任务的实验。
本研究使用基于深度学习的语义分割和对象检测方法来证明在 ECPC-IDS 上的区分能力。从单独的角度来看,PET 图像上的 Dice 最小值和最大值分别为 0.546 和 0.743。CT 图像上的 Dice 最小值和最大值分别为 0.012 和 0.510。PET 和 CT 图像上的目标检测部分的最大 mAP 值分别为 0.993 和 0.986。
据我们所知,这是第一个包含大量多模态图像的子宫内膜癌公开数据集。ECPC-IDS 可以帮助研究人员探索新的算法来增强计算机辅助诊断,使临床医生和患者都受益。ECPC-IDS 也在 https://figshare.com/articles/dataset/ECPC-IDS/23808258 上免费发布,仅供非商业用途使用。